Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R628-R639, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892908

RESUMO

We investigated expression of cholecystokinin (CCK) in humans and mice, and the bitter taste receptor TAS2R14 in the human placenta. Because CCK and gastrin activate the CCKBR receptor, we also explored placental gastrin expression. Finally, we investigated calcium signaling by CCK and TAS2R14. By RT-PCR, we found CCK/Cck and GAST/Gast mRNA expression in both normal human and mouse placentas, as well as in human trophoblast cell lines (TCL). Although both Cckar and -br mRNA were expressed in the mouse placenta, only CCKBR mRNA was detected in the human placenta and TCL. mRNA expression for TAS2R14 was also observed in the human placenta and TCL. Using immunohistochemistry, CCK protein was localized to the syncytiotrophoblast (ST) and extravillous trophoblast (EVT) in the human term placenta, and to trophoblast glycogen cells in mouse and human placentas. Gastrin and TAS2R14 proteins were also observed in ST and EVT of the human placenta. Both sulfated and nonsulfated CCK elicited a comparable rise in intracellular calcium in TCL, consistent with CCKBR expression. Three TAS2R14 agonists, flufenamic acid, chlorhexidine, and diphenhydramine, also evoked rises in intracellular calcium in TCL. These results establish CCK, gastrin, and their receptor(s) in both human and mouse placentas, and TAS2R14 in the human placenta. Both CCK and TAS2R14 agonists increased intracellular calcium in human TCL. Although the roles of these ligands and receptors, and their potential cross talk in normal and pathological placentas, are currently unknown, this study opens new avenues for placental research.


Assuntos
Colecistocinina/metabolismo , Gastrinas/metabolismo , Receptor de Colecistocinina B/metabolismo , Receptores da Colecistocinina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Trofoblastos/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular , Colecistocinina/genética , Colecistocinina/farmacologia , Feminino , Gastrinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Colecistocinina B/genética , Receptores da Colecistocinina/agonistas , Receptores da Colecistocinina/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos
2.
Biomedicines ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36830842

RESUMO

Diabetic nephropathy is the primary cause of morbidity in type 2 diabetes mellitus (T2DM) patients. New data indicate that hypertension, a common comorbidity in T2DM, can worsen outcomes of diabetic nephropathy. While metformin is a commonly prescribed drug for treating type 2 diabetes, its blood pressure regulating ability is not well documented. The aim of this study was to investigate the effect of metformin on normalizing blood pressure in salt-loaded hypertensive diabetic db/db mice. Sixteen-week-old male and female diabetic db/db mice were individually placed in metabolic cages and then randomized to a control vehicle (saline) or metformin treatment group. We evaluated the blood pressure reducing ability of metformin in salt-induced hypertension and progression of nephropathy in db/db mice. We observed that metformin- normalized systolic blood pressure in hypertensive diabetic mice. Mechanistically, metformin treatment reduced renal cathepsin B expression. Low cathepsin B expression was associated with reduced expression and activity of the epithelial sodium channel (ENaC), sodium retention, and thus control of hypertension. In addition, we identified that urinary extracellular vesicles (EVs) from the diabetic mice are enriched in cathepsin B. Compared to treatment with urinary EVs of vehicle-treated hypertensive diabetic mice, the amiloride-sensitive transepithelial current was significantly attenuated upon exposure of renal collecting duct cells to urinary EVs isolated from metformin-treated db/db mice or cathepsin B knockout mice. Collectively, our study identifies a novel blood pressure reducing role of metformin in diabetic nephropathy by regulating the cathepsin B-ENaC axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA