RESUMO
The presence and antimicrobial susceptibility of foodborne pathogens and indicator organisms in animal feed are not well understood. In this study, a total of 201 feed ingredient samples (animal byproducts, n=122; plant byproducts, n=79) were collected in 2002 and 2003 from representative rendering plants and the oilseed (or cereal grain) industry across the United States. The occurrence and antimicrobial susceptibility of four bacterial genera (Salmonella, Campylobacter, Escherichia coli, and Enterococcus) were determined. Salmonella isolates were further characterized by serotyping and pulsed-field gel electrophoresis (PFGE). None of the samples yielded Campylobacter or E. coli O157:H7, whereas Salmonella, generic E. coli, and Enterococcus were present in 22.9%, 39.3%, and 86.6% of samples, respectively. A large percentage (47.8%) of Salmonella-positive samples harbored two serovars, and the vast majority (88.4%) of Enterococcus isolates were E. faecium. Animal byproducts had a significantly higher Salmonella contamination rate (34.4%) than plant byproducts (5.1%) (p<0.05). Among 74 Salmonella isolates recovered, 27 serovars and 55 PFGE patterns were identified; all were pan-susceptible to 17 antimicrobials tested. E. coli isolates (n=131) demonstrated similar susceptibility to these antimicrobials except for tetracycline (15.3% resistance), sulfamethoxazole (7.6%), streptomycin (4.6%), ampicillin (3.8%), and nalidixic acid (1.5%). Enterococcus isolates (n=362) were also resistant to five of 17 antimicrobials tested, ranging from 1.1% to penicillin to 14.6% to tetracycline. Resistance rates were generally higher among isolates recovered from animal byproducts. Taken together, our findings suggest that diverse populations of Salmonella, E. coli, and Enterococcus are commonly present in animal feed ingredients, but antimicrobial resistance is not common. Future large-scale studies to monitor these pathogenic and indicator organisms in feed commodities is warranted.
Assuntos
Ração Animal/microbiologia , Campylobacter/isolamento & purificação , Enterococcus/isolamento & purificação , Escherichia coli/isolamento & purificação , Carne/microbiologia , Salmonella/isolamento & purificação , Animais , Campylobacter/efeitos dos fármacos , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Eletroforese em Gel de Campo Pulsado , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Contaminação de Alimentos , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Sorotipagem , Estados UnidosRESUMO
ABSTRACT: The U.S. Food and Drug Administration (FDA) conducted a sampling assignment in 2014 to ascertain the prevalence of Cronobacter spp. and Salmonella in the processing environment of facilities manufacturing milk powder. Cronobacter was detected in the environment of 38 (69%) of 55 facilities. The average prevalence of Cronobacter in 5,671 subsamples (i.e., swabs and sponges from different facility locations) was 4.4%. In the 38 facilities where Cronobacter was detected, the average prevalence of positive environmental subsamples was 6.25%. In 20 facilities where zone information of the sampling location was complete, Cronobacter was most frequently detected in zone 4, followed by zone 3, then zone 2, with zone 1 yielding the lowest percentage of positive samples. The prevalence of Cronobacter across the zones was statistically different (P < 0.05). There was no significant association between product type (i.e., lactose, whey products, buttermilk powder, and nonfat dried milk) and prevalence of Cronobacter in the facility. Salmonella was detected in the environment of three (5.5%) of the 55 facilities; all three facilities produced dried whey product. The overall prevalence of Salmonella in 5,714 subsamples was 0.16%. In facilities in which Salmonella was detected, the average prevalence was 2.5%. Salmonella was most frequently detected in zone 4, followed by zone 3. Salmonella was not detected in zone 1 or zone 2. The disparity between Salmonella and Cronobacter prevalence indicates that additional measures may be required to reduce or eliminate Cronobacter from the processing environment.
Assuntos
Cronobacter sakazakii , Cronobacter , Animais , Microbiologia de Alimentos , Instalações Industriais e de Manufatura , Leite , Pós , Prevalência , Salmonella , Estados Unidos/epidemiologiaRESUMO
Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Enterococcus/efeitos dos fármacos , Enterococcus/genética , Abrigo para Animais , Aves Domésticas/microbiologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Animais , Coagulase/genética , Coagulase/metabolismo , Pisos e Cobertura de Pisos , Staphylococcus/enzimologiaRESUMO
From March 2001 to June 2002, a total of 981 samples of retail raw meats (chicken, turkey, pork, and beef) were randomly obtained from 263 grocery stores in Iowa and cultured for the presence of Enterococcus spp. A total of 1,357 enterococcal isolates were recovered from the samples, with contamination rates ranging from 97% of pork samples to 100% of ground beef samples. Enterococcus faecium was the predominant species recovered (61%), followed by E. faecalis (29%), and E. hirae (5.7%). E. faecium was the predominant species recovered from ground turkey (60%), ground beef (65%), and chicken breast (79%), while E. faecalis was the predominant species recovered from pork chops (54%). The incidence of resistance to many production and therapeutic antimicrobials differed among enterococci recovered from retail meat samples. Resistance to quinupristin-dalfopristin, a human analogue of the production drug virginiamycin, was observed in 54, 27, 9, and 18% of E. faecium isolates from turkey, chicken, pork, and beef samples, respectively. No resistance to linezolid or vancomycin was observed, but high-level gentamicin resistance was observed in 4% of enterococci, the majority of which were recovered from poultry retail meats. Results indicate that Enterococcus spp. commonly contaminate retail meats and that dissimilarities in antimicrobial resistance patterns among enterococci recovered from different meat types may reflect the use of approved antimicrobial agents in each food animal production class.