Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37446200

RESUMO

There are currently no pharmacological treatments available that completely halt or reverse the progression of Parkinson's Disease (PD). Hence, there is an unmet need for neuroprotective therapies. Lewy bodies are a neuropathological hallmark of PD and contain aggregated α-synuclein (α-syn) which is thought to be neurotoxic and therefore a suitable target for therapeutic interventions. To investigate this further, a systematic review was undertaken to evaluate whether anti-α-syn therapies are effective at preventing PD progression in preclinical in vivo models of PD and via current human clinical trials. An electronic literature search was performed using MEDLINE and EMBASE (Ovid), PubMed, the Web of Science Core Collection, and Cochrane databases to collate clinical evidence that investigated the targeting of α-syn. Novel preclinical anti-α-syn therapeutics provided a significant reduction of α-syn aggregations. Biochemical and immunohistochemical analysis of rodent brain tissue demonstrated that treatments reduced α-syn-associated pathology and rescued dopaminergic neuronal loss. Some of the clinical studies did not provide endpoints since they had not yet been completed or were terminated before completion. Completed clinical trials displayed significant tolerability and efficacy at reducing α-syn in patients with PD with minimal adverse effects. Collectively, this review highlights the capacity of anti-α-syn therapies to reduce the accumulation of α-syn in both preclinical and clinical trials. Hence, there is potential and optimism to target α-syn with further clinical trials to restrict dopaminergic neuronal loss and PD progression and/or provide prophylactic protection to avoid the onset of α-syn-induced PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Corpos de Lewy/metabolismo , Encéfalo/metabolismo , Progressão da Doença
2.
Curr Issues Mol Biol ; 45(1): 12-32, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661488

RESUMO

COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.

3.
Mol Biol Rep ; 49(6): 5419-5426, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35064408

RESUMO

BACKGROUND: Gossypium arboreum is a cotton crop native to tropical and subtropical regions that are naturally resistant to cotton leaf curl virus (CLCuV). However, its cultivation is unfavorable due to the lower quality and shorter fiber length of cotton when compared to the market leading G. hirsutum. Plasma membrane intrinsic protein 2 (PIP2) is an aquaporin responsible for the transport of water and small molecules across cellular membranes. This fluid transport influences cell elongation and cotton fibre development. Hence, increased PIP2 expression may yield plants with enhanced fiber qualities including length. METHODS AND RESULTS: To test this hypothesis, G. arboreum was transformed with a PIP2 gene construct (35SCpPIP2) using the Agrobacterium-mediated shoot apex cutting method. Relative expression of the CpPIP2 gene in transgenic plants increased up to 35-fold when compared with non-transgenic controls. Transgenic plants displayed a corresponding increase of staple length (up to 150%) when compared with non-transgenic controls. Transgene integration was examined using FISH and karyotyping and revealed the presence of a single transgene located on chromosome 6. CONCLUSION: Since G. arboreum is naturally whitefly and CLCuV resistant, this improvement of fiber length evidenced for CpPIP2 transgenic plants renders their crop production more economically viable.


Assuntos
Begomovirus , Gossypium , Begomovirus/genética , Membrana Celular , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética
4.
Molecules ; 27(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956841

RESUMO

Alzheimer's disease (AD) is characterised by progressive neuronal atrophy and the loss of neuronal function as a consequence of multiple pathomechanisms. Current AD treatments primarily operate at a symptomatic level to treat a cholinergic deficiency and can cause side effects. Hence, there is an unmet need for healthier lifestyles to reduce the likelihood of AD as well as improved treatments with fewer adverse reactions. Diets rich in phytochemicals may reduce neurodegenerative risk and limit disease progression. The native South American palm acai berry (Euterpe oleraceae) is a potential source of dietary phytochemicals beneficial to health. This study aimed to screen the nutraceutical potential of the acai berry, in the form of aqueous and ethanolic extracts, for the ability to inhibit acetyl- and butyryl-cholinesterase (ChE) enzymes and scavenge free radicals via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) or 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. In addition, this study aimed to quantify the acai berry's antioxidant potential via hydrogen peroxide or hydroxyl scavenging, nitric oxide scavenging, lipid peroxidation inhibition, and the ability to reduce ferric ions. Total polyphenol and flavonoid contents were also determined. Acai aqueous extract displayed a concentration-dependent inhibition of acetyl- and butyryl-cholinesterase enzymes. Both acai extracts displayed useful concentration-dependent free radical scavenging and antioxidant abilities, with the acai ethanolic extract being the most potent antioxidant and displaying the highest phenolic and flavonoid contents. In summary, extracts of the acai berry contain nutraceutical components with anti-cholinesterase and antioxidant capabilities and may therefore provide a beneficial dietary component that limits the pathological deficits evidenced in AD.


Assuntos
Doença de Alzheimer , Euterpe , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/química , Suplementos Nutricionais , Euterpe/química , Flavonoides/química , Compostos Fitoquímicos , Extratos Vegetais/química
5.
Curr Issues Mol Biol ; 44(1): 152-175, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723391

RESUMO

The number of patients with neurodegenerative diseases, particularly Alzheimer's disease (AD), continues to grow yearly. Cholinesterase inhibitors (ChEIs) represent the first-line symptomatic drug treatment for mild-to-moderate AD; however, there is an unmet need to produce ChEIs with improved efficacy and reduced side effects. Herein, phytochemicals with reported anti-acetylcholinesterase (AChE) activity were ranked in silico for their anti-AChE potential. Ligands with a similar or higher binding affinity to AChE than galantamine were then selected for the design of novel dual-binding site heterodimeric drugs. In silico molecular docking of heterodimers with the target enzymes, AChE and butyrylcholinesterase (BuChE), were performed, and anti-cholinesterase binding affinities were compared with donepezil. Drug-likeliness properties and toxicity of the heterodimers were assessed using the SwissADME and ProTox-II webservers. Nine phytochemicals displayed similar or higher binding affinities to AChE than galantamine: sanguinarine > huperzine A > chelerythrine > yohimbine > berberine > berberastine > naringenin > akuammicine > carvone. Eleven heterodimeric ligands were designed with phytochemicals separated by four- or five-carbon alkyl-linkers. All heterodimers were theoretically potent AChE and BuChE dual-binding site inhibitors, with the highest affinity achieved with huperzine-4C-naringenin, which displayed 34% and 26% improved affinity to AChE and BuChE, respectively, then the potent ChEI drug, donepezil. Computational pharmacokinetic and pharmacodynamic screening suggested that phytochemical heterodimers would display useful gastrointestinal absorption and with relatively low predicted toxicity. Collectively, the present study suggests that phytochemicals could be garnered for the provision of novel ChEIs with enhanced drug efficacy and low toxicity.

6.
Malays J Med Sci ; 25(2): 27-39, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30918453

RESUMO

BACKGROUND: Polyherbal standardised extracts used in ethnomedicine of Eastern Nigeria for memory improvements were evaluated for anti-cholinesterases and anti-oxidant properties. METHODS: Anti-cholinesterase, anti-oxidant, and total phenolic and flavonoid contents were established using standard procedures. RESULTS: The three polyherbal extracts exhibited significant concentration dependent acetylcholinesterase (AChE) inhibitory activity (P = 0.001). The highest AChE inhibition was observed with the Neocare Herbal Tea (NHT) with 99.7% (IC50 = 324 µg/mL); whereas the Herbalin Complex Tea (HCT) and Phytoblis Herbal Tea (PHT) exhibited 73.8% (IC50 = 0.2 µg/mL) and 60.6% (IC50 = 0.7 µg/mL) inhibition, respectively, relative to eserine at 100% inhibition (IC50 = 0.9 µg/mL) at 200 µg/mL. The order of percentage increase in inhibition of AChE was NHT > HCT > PHT; while the order of decrease in potency was HCT > PHT > NHT.Radical scavenging activities of HCT, NHT and PHT were 82.13% (IC50 = 0.08 µg/mL), 77.43% (IC50 = 0.01 µg/mL) and 76.28% (IC50 = 0.3 µg/mL), respectively, at 1 mg/mL concentrations. The reducing power revealed a dose-dependent effect, with NHT > PHT > HCT. The order of total phenolics content in the extracts were PHT > HCT > NHT, and for total flavonoids content: PHT > NHT > HCT. CONCLUSION: The three polyherbal standardised products possess significant acetylcholinesterase inhibitory activity and secondary metabolites that could collectively contribute to their memory-enhancing effects.

7.
Pharm Biol ; 55(1): 1875-1883, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28629287

RESUMO

CONTEXT: There is an unmet need to discover new treatments for Alzheimer's disease. This study determined the anti-acetylcholinesterase (AChE) activity, DPPH free radical scavenging and antioxidant properties of Carpolobia lutea G. Don (Polygalaceae). OBJECTIVE: The objective of this study is to quantify C. lutea anti-AChE, DPPH free radical scavenging, and antioxidant activities and cell cytotoxicity. MATERIALS AND METHODS: Plant stem, leaves and roots were subjected to sequential solvent extractions, and screened for anti-AChE activity across a concentration range of 0.02-200 µg/mL. Plant DPPH radical scavenging activity, reducing power, and total phenolic and flavonoid contents were determined, and cytotoxicity evaluated using human hepatocytes. RESULTS: Carpolobia lutea exhibited concentration-dependent anti-AChE activity. The most potent inhibitory activity for the stem was the crude ethanol extract and hexane stem fraction oil (IC50 = 140 µg/mL); for the leaves, the chloroform leaf fraction (IC50 = 60 µg/mL); and for roots, the methanol, ethyl acetate and aqueous root fractions (IC50 = 0.3-3 µg/mL). Dose-dependent free radical scavenging activity and reducing power were observed with increasing stem, leaf or root concentration. Total phenolic contents were the highest in the stem: ∼632 mg gallic acid equivalents/g for a hexane stem fraction oil. Total flavonoid content was the highest in the leaves: ∼297 mg quercetin equivalents/g for a chloroform leaf fraction. At 1 µg/mL, only the crude ethanol extract oil was significantly cytotoxic to hepatocytes. DISCUSSION AND CONCLUSIONS: Carpolobia lutea possesses anti-AChE activity and beneficial antioxidant capacity indicative of its potential development as a treatment of Alzheimer's and other diseases characterized by a cholinergic deficit.


Assuntos
Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Descoberta de Drogas , Hepatócitos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Óleos de Plantas/farmacologia , Polygalaceae/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/efeitos adversos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/isolamento & purificação , Flavonoides/análise , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Células Hep G2 , Humanos , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Nootrópicos/análise , Nootrópicos/química , Nootrópicos/isolamento & purificação , Nootrópicos/farmacologia , Fenóis/análise , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Óleos de Plantas/efeitos adversos , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Raízes de Plantas/química , Caules de Planta/química , Ratos Endogâmicos F344
8.
Biochem Biophys Res Commun ; 458(3): 626-631, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25684186

RESUMO

We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and (3)H-S-adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ∼ 75-80 kDa, ∼ 95-100 kDa, and ∼ 155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ∼ 160 kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (∼ 2.3-fold) increase in CPS-1 levels compared to 4-week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/análise , Anidrase Carbônica III/análise , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácido Isoaspártico/análise , Fígado/patologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Anidrase Carbônica III/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/efeitos adversos , Ácido Isoaspártico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo
9.
Biomedicines ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540118

RESUMO

Mefloquine (MQ) is a quinoline-based anti-malarial drug used for chemoprophylaxis or as a treatment in combination with artesunate. Although MQ has clear anti-Plasmodium falciparum properties, it can induce neurotoxicity and undesired neuropsychiatric side effects in humans. Hence, this study aimed to characterize the neurotoxicity of MQ using human neuroblastoma SH-SY5Y cells. The effects of MQ on neuronal toxicity and cell viability were investigated over a concentration range of 1-100 µM using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The influence of MQ on cellular bioenergetics was examined by measuring cellular ATP levels and from the induction of reactive oxygen species (ROS). An in silico approach was used to assess the potential neurotoxicity of MQ mediated via binding to the active sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and then experimentally validated via in vitro enzymatic assays. MQ was cytotoxic to neuronal cells in a concentration and exposure duration dependent manner and induced a significant reduction in viability at concentrations of ≥25 µM after a 24 h exposure. MQ adversely impacted cellular bioenergetics and significantly depleted ATP production at concentrations of ≥1 µM after 24 h. MQ-induced cellular ROS production, which was correlated with the induction of apoptosis, as revealed by flow cytometry. In silico studies suggested that MQ was a dual cholinesterase inhibitor and one with remarkably potent binding to BuChE. Modelling data were supported by in vitro studies which showed that MQ inhibited both human AChE and BuChE enzymes. In summary, MQ is an antimalarial drug that may induce neurotoxicity by impacting cellular bioenergetics and perturbing the activity of cholinesterases at exposure concentrations relevant to human dosage.

10.
Brain Sci ; 14(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38928545

RESUMO

Epilepsy is a neurological disease that affects approximately 50 million people worldwide. Despite an existing abundance of antiepileptic drugs, lifelong disease treatment is often required but could be improved with alternative drugs that have fewer side effects. Given that epileptic seizures stem from abnormal neuronal discharges predominately modulated by the human sodium channel Nav1.2, the quest for novel and potent Nav1.2 blockers holds promise for epilepsy management. Herein, an in vivo approach was used to detect new antiepileptic compounds using the maximum electroshock test on mice. Pre-treatment of mice with extracts from the Ficus religiosa plant ameliorated the tonic hind limb extensor phase of induced convulsions. Subsequently, an in silico approach identified potential Nav1.2 blocking compounds from F. religiosa using a combination of computational techniques, including molecular docking, prime molecular mechanics/generalized Born surface area (MM/GBSA) analysis, and molecular dynamics (MD) simulation studies. The molecular docking and MM/GBSA analysis indicated that out of 82 compounds known to be present in F. religiosa, seven exhibited relatively strong binding affinities to Nav1.2 that ranged from -6.555 to -13.476 kcal/mol; similar or with higher affinity than phenytoin (-6.660 kcal/mol), a known Na+-channel blocking antiepileptic drug. Furthermore, MD simulations revealed that two compounds: 6-C-glucosyl-8-C-arabinosyl apigenin and pelargonidin-3-rhamnoside could form stable complexes with Nav1.2 at 300 K, indicating their potential as lead antiepileptic agents. In summary, the combination of in vivo and in silico approaches supports the potential of F. religiosa phytochemicals as natural antiepileptic therapeutic agents.

11.
Antioxidants (Basel) ; 13(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39199178

RESUMO

The transition metal cadmium (Cd) is toxic to humans and can induce cellular redox stress and inflammation. Cd is a recognized carcinogen, but the molecular mechanisms associated with its genotoxicity and carcinogenicity are not defined. Therefore, a systematic review was undertaken to examine the scientific literature that has covered the molecular mechanism of Cd genotoxicity and its relationship to cellular redox stress and inflammation. An electronic database search of PubMed, Scopus, and the Web of Science Core Collection was conducted to retrieve the studies that had investigated if Cd genotoxicity was directly linked to the induction of redox stress and inflammation. Studies included exposure to Cd via in vitro and in vivo routes of administration. Of 214 publications retrieved, 10 met the inclusion criteria for this review. Preclinical studies indicate that Cd exposure causes the induction of reactive oxygen species (ROS) and, via concomitant activity of the transcription factor NF-κß, induces the production of pro-inflammatory cytokines and a cytokine profile consistent with the induction of an allergic response. There is limited information regarding the impact of Cd on cellular signal transduction pathways, and the relationship of this to genotoxicity is still inconclusive. Nevertheless, pre-incubation with the antioxidants, N-acetylcysteine or sulforaphane, or the necroptosis inhibitor, necrostatin-1, reduces Cd toxicity; indicative that these agents may be a beneficial treatment adjunct in cases of Cd poisoning. Collectively, this review highlights that Cd-induced toxicity and associated tissue pathology, and ultimately the carcinogenic potential of Cd, may be driven by redox stress and inflammatory mechanisms.

12.
Antioxidants (Basel) ; 13(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38790685

RESUMO

Alcohol is toxic to neurons and can trigger alcohol-related brain damage, neuronal loss, and cognitive decline. Neuronal cells may be vulnerable to alcohol toxicity and damage from oxidative stress after differentiation. To consider this further, the toxicity of alcohol to undifferentiated SH-SY5Y cells was compared with that of cells that had been acutely differentiated. Cells were exposed to alcohol over a concentration range of 0-200 mM for up to 24 h and alcohol effects on cell viability were evaluated via MTT and LDH assays. Effects on mitochondrial morphology were examined via transmission electron microscopy, and mitochondrial functionality was examined using measurements of ATP and the production of reactive oxygen species (ROS). Alcohol reduced cell viability and depleted ATP levels in a concentration- and exposure duration-dependent manner, with undifferentiated cells more vulnerable to toxicity. Alcohol exposure resulted in neurite retraction, altered mitochondrial morphology, and increased the levels of ROS in proportion to alcohol concentration; these peaked after 3 and 6 h exposures and were significantly higher in differentiated cells. Protein carbonyl content (PCC) lagged behind ROS production and peaked after 12 and 24 h, increasing in proportion to alcohol concentration, with higher levels in differentiated cells. Carbonylated proteins were characterised by their denatured molecular weights and overlapped with those from adult post-mortem brain tissue, with levels of PCC higher in alcoholic subjects than matched controls. Hence, alcohol can potentially trigger cell and tissue damage from oxidative stress and the accumulation of oxidatively damaged proteins.

13.
Brain Sci ; 13(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37239200

RESUMO

Organophosphate (OP) and carbamate pesticides are toxic to pests through targeted inhibition of acetylcholinesterase (AChE). However, OPs and carbamates may be harmful to non-target species including humans and could induce developmental neurotoxicity if differentiated or differentiating neurons are particularly vulnerable to neurotoxicant exposures. Hence, this study compared the neurotoxicity of OPs, chlorpyrifos-oxon (CPO), and azamethiphos (AZO) and the carbamate pesticide, aldicarb, to undifferentiated versus differentiated SH-SY5Y neuroblastoma cells. OP and carbamate concentration-response curves for cell viability were undertaken using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and cellular bioenergetic capacity assessed via quantitation of cellular ATP levels. Concentration-response curves for inhibition of cellular AChE activity were also generated and the production of reactive oxygen species (ROS) was monitored using a 2',7'-dichlorofluorescein diacetate (DCFDA) assay. The OPs and aldicarb reduced cell viability, cellular ATP levels, and neurite outgrowth in a concentration-dependent fashion, from a threshold concentration of ≥10 µM. Neurotoxic potency was in the order AZO > CPO > aldicarb for undifferentiated cells but CPO > AZO > aldicarb for differentiated cells and this toxic potency of CPO reflected its more extensive induction of reactive oxygen species (ROS) and generation of carbonylated proteins that were characterized by western blotting. Hence, the relative neurotoxicity of the OPs and aldicarb in part reflects non-cholinergic mechanisms that are likely to contribute to developmental neurotoxicity.

14.
Life (Basel) ; 13(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37109548

RESUMO

Aberrant accumulation of the neurotransmitter L-glutamate (L-Glu) has been implicated as a mechanism of neurodegeneration, and the release of L-Glu after stroke onset leads to a toxicity cascade that results in neuronal death. The acai berry (Euterpe oleracea) is a potential dietary nutraceutical. The aim of this research was to investigate the neuroprotective effects of acai berry aqueous and ethanolic extracts to reduce the neurotoxicity to neuronal cells triggered by L-Glu application. L-Glu and acai berry effects on cell viability were quantified using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and effects on cellular bioenergetics were assessed via quantitation of the levels of cellular ATP, mitochondrial membrane potential (MMP), and production of reactive oxygen species (ROS) in neuroblastoma cells. Cell viability was also evaluated in human cortical neuronal progenitor cell culture after L-Glu or/and acai berry application. In isolated cells, activated currents using patch-clamping were employed to determine whether L-Glu neurotoxicity was mediated by ionotropic L-Glu-receptors (iGluRs). L-Glu caused a significant reduction in cell viability, ATP, and MMP levels and increased ROS production. The co-application of both acai berry extracts with L-Glu provided neuroprotection against L-Glu with sustained cell viability, decreased LDH production, restored ATP and MMP levels, and reduced ROS levels. Whole-cell patch-clamp recordings showed that L-Glu toxicity is not mediated by the activation of iGluRs in neuroblastoma cells. Fractionation and analysis of acai berry extracts with liquid chromatography-mass spectrometry identified several phytochemical antioxidants that may have provided neuroprotective effects. In summary, the acai berry contains nutraceuticals with antioxidant activity that may be a beneficial dietary component to limit pathological deficits triggered by excessive L-Glu accumulations.

15.
Brain Sci ; 13(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137165

RESUMO

Paraquat (PQ), rotenone (RO), and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are neurotoxicants that can damage human health. Exposure to these neurotoxicants has been linked to neurodegeneration, particularly Parkinson's disease. However, their mechanisms of action have not been fully elucidated, nor has the relative vulnerability of neuronal subtypes to their exposures. To address this, the current study investigated the cytotoxic effects of PQ, RO, and MPTP and their relative effects on cellular bioenergetics and oxidative stress on undifferentiated human neuroblastoma (SH-SY5Y) cells and those differentiated to dopaminergic (DA) or cholinergic (CH) phenotypes. The tested neurotoxicants were all cytotoxic to the three cell phenotypes that correlated with both concentration and exposure duration. At half-maximal effective concentrations (EC50s), there were significant reductions in cellular ATP levels and reduced activity of the mitochondrial complexes I and III, with a parallel increase in lactate production. PQ at 10 µM significantly decreased ATP production and mitochondrial complex III activity only in DA cells. RO was the most potent inhibitor of mitochondrial complex 1 and did not inhibit mitochondrial complex III even at concentrations that induced a 50% loss of cell viability. MPTP was the most potent toxicant in undifferentiated cells. All neurotoxicants significantly increased reactive oxygen species, lipid peroxidation, and nuclear expression of Nrf2, with a corresponding inhibition of the antioxidant enzymes catalase and superoxide dismutase. At a 10 µM exposure to PQ or RO, oxidative stress biomarkers were significant in DA cells. Collectively, this study underscores the importance of mitochondrial dysfunction and oxidative stress in PQ, RO, and MPTP-induced cytotoxicity and that neuronal phenotypes display differential vulnerability to these neurotoxicants.

16.
Heliyon ; 9(9): e19368, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809884

RESUMO

During the COVID-19 pandemic, there was a shortage of personal protective equipment, PPE, which resulted in non-certified PPE being used by healthcare staffs. These would not provide the appropriate protection against the SARS-CoV-2 virus. Together with the local NHS Trust (University Hospitals of Derby and Burton (UHDB) NHS Foundation Trust) and a local small and medium enterprise (SME), Riverside Medical Packaging Ltd, the University of Derby (UoD) developed test protocols for PPE with a one-size-fits-all concept. Building on best practice in reviewing the literature and current design requirements, key design parameters were identified such as a minimum strap width and comfort level for healthcare related Face Shield. Two strap headbands made from fabric and elastomer with linear stiffness of 44.1 ± 0.3 N/m and 149.1 ± 3.1 N/m respectively were tested with respect to fit and comfort on small and large arc-shaped models. There was an exponential change in pressure from the side to the middle of the strap headbands. The high stiffness of the elastomer in a radial set-up influenced the pressure exerted on a wearer's head when the elastomer strap was used. Meanwhile the coefficient of friction between the fabric strap and arc-shaped model influenced the pressure exerted when a fabric strap was used. The ergonomics of the designed Face Shields supported the one-size-fits-all concept, whereby various gender and head circumferences were considered. The findings in this paper will promote new standards in the design of PPE with a one-size-fits-all target.

17.
Acta Trop ; 239: 106810, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581225

RESUMO

Toxoplasmosis is a disease with a worldwide distribution and significant morbidity and mortality. In search of effective treatment, mefloquine (MQ) was repurposed and loaded with niosomes to treat acute and chronic phases of toxoplasmosis in experimental mice. Mice were orally inoculated with 20 cysts of Toxoplasma gondii (ME 49 strain) for the acute model of infection and 10 cysts for the chronic model of infection. Infected mice were dosed with MQ solution or MQ-niosomes at 50 mg/kg/day, starting from the second day post-infection (PI) (acute model) or the fifth week PI (chronic model), and this was continued for six consecutive days. The effects of MQ solution and MQ-niosomes were compared with a pyrimethamine/sulfadiazine (PYR/SDZ) dosing combination as mortality rates, brain cyst number, inflammatory score, and immunohistochemical studies that included an estimation of apoptotic cells (TUNEL assays). In the acute infection model, MQ solution and MQ-niosomes significantly reduced the mortality rate from 45% to 25 and 10%, respectively, compared with infected untreated controls, and decreased the number of brain cysts by 51.5% and 66.9%, respectively. In the chronic infection model, cyst reduction reached 80.9% and 12.3% for MQ solution and MQ-niosomes treatments, respectively. MQ-niosomes significantly decreased inflammation induced by acute or chronic T. gondii infection. Additionally, immunohistochemical analysis revealed that MQ solution and MQ-niosomes significantly increased the number of TUNEL-positive cells in brain tissue, indicative of induction of apoptosis. Collectively, these results indicate that MQ-niosomes may provide a useful delivery strategy to treat both acute and chronic toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose Animal , Toxoplasmose , Animais , Camundongos , Mefloquina/uso terapêutico , Mefloquina/farmacologia , Lipossomos , Toxoplasmose/tratamento farmacológico , Pirimetamina/farmacologia , Sulfadiazina , Toxoplasmose Animal/tratamento farmacológico
18.
Brain Sci ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35624964

RESUMO

L-glutamate (L-Glu) is a nonessential amino acid, but an extensively utilised excitatory neurotransmitter with critical roles in normal brain function. Aberrant accumulation of L-Glu has been linked to neurotoxicity and neurodegeneration. To investigate this further, we systematically reviewed the literature to evaluate the effects of L-Glu on neuronal viability linked to the pathogenesis and/or progression of neurodegenerative diseases (NDDs). A search in PubMed, Medline, Embase, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between L-Glu and pathology for five NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Together, 4060 studies were identified, of which 71 met eligibility criteria. Despite several inadequacies, including small sample size, employment of supraphysiological concentrations, and a range of administration routes, it was concluded that exposure to L-Glu in vitro or in vivo has multiple pathogenic mechanisms that influence neuronal viability. These mechanisms include oxidative stress, reduced antioxidant defence, neuroinflammation, altered neurotransmitter levels, protein accumulations, excitotoxicity, mitochondrial dysfunction, intracellular calcium level changes, and effects on neuronal histology, cognitive function, and animal behaviour. This implies that clinical and epidemiological studies are required to assess the potential neuronal harm arising from excessive intake of exogenous L-Glu.

19.
Brain Sci ; 12(8)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892416

RESUMO

Acute or chronic exposures to pesticides have been linked to neurotoxicity and the potential development of neurodegenerative diseases (NDDs). This study aimed to consider the neurotoxicity of three widely utilized pesticides: malathion, chlorpyrifos, and paraquat within the hippocampus (HC), corpus striatum (CS), cerebellum (CER), and cerebral cortex (CC). Neurotoxicity was evaluated at relatively low, medium, and high pesticide dosages. All pesticides inhibited acetylcholinesterase (AChE) and neuropathy target esterase (NTE) in each of the brain regions, but esterase inhibition was greatest in the HC and CS. Each of the pesticides also induced greater disruption to cellular bioenergetics within the HC and CS, and this was monitored via inhibition of mitochondrial complex enzymes I and II, reduced ATP levels, and increased lactate production. Similarly, the HC and CS were more vulnerable to redox stress, with greater inhibition of the antioxidant enzymes catalase and superoxide dismutase and increased lipid peroxidation. All pesticides induced the production of nuclear Nrf2 in a dose-dependent manner. Collectively, these results show that pesticides disrupt cellular bioenergetics and that the HC and CS are more susceptible to pesticide effects than the CER and CC.

20.
Healthcare (Basel) ; 10(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35742100

RESUMO

The COVID-19 pandemic has had a damaging impact on global health. Post-infection, patients may experience mental health difficulties and therefore require suitable psychological treatment and support. The objective of this study was to identify the psychological impact of COVID-19 on patients who were recovering from the physical effects of the disease, and to examine socio-demographic correlates within one month of treatment at a tertiary healthcare facility in Pakistan. A cross-sectional study was employed that utilized the Depression Anxiety Stress Scale-21 and Post-Traumatic Stress Disorder (PTSD) Checklist for DSM-5. A questionnaire was administered to 250 patients, with data collected over three months. Mild to extremely severe scores of depression, anxiety and stress were reported by approximately 43%, 52% and 42% of participants, respectively, and 8% developed PTSD. The incidence of depression, anxiety, stress or PTSD was not significantly associated with gender, age or previous interaction with COVID-19 patients. Depression was significantly associated with levels of education, severity of COVID-19 disease and a patient's current condition. Anxiety was associated with healthcare worker status. The severity of disease and a patient's current condition were also linked to the levels of anxiety, stress and the presence of PTSD. Collectively, these results indicate that a high percentage of patients recovering from COVID-19 experience psychological distress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA