Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 104(2): 199-208, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561099

RESUMO

NEW FINDINGS: What is the central question of this study? Is the responsiveness of isolated segments of the rat oesophagus to contractile or relaxant stimuli susceptible to acute luminal exposure of the oesophagus to an acid solution that contains pepsin and bile salt? What is the main finding and its importance? The study reveals that luminal acidity is an important factor that disrupts barrier function in the oesophagus to allow the diffusion of noxious agents, such as bile acid, that alter the contractile status of the oesophageal body, even in the absence of inflammation. ABSTRACT: We investigated whether the experimental simulation of duodenogastro-oesophageal reflux alters the contractile responsiveness of rat oesophageal strips. After 30 min of luminal exposure to a solution at acid pH that contained pepsin and taurodeoxycholic acid, isolated strips of the rat oesophagus and gastro-oesophageal junction were subjected to contractile or relaxing stimuli. Acid challenge decreased the responsiveness of oesophageal strips to contractile stimulation, especially in oesophageal preparations that were mounted following the circular orientation of the muscularis externa layer. The contractility of longitudinal preparations of the rat oesophagus appeared less susceptible to the deleterious effects of acid challenge. In contrast, the responsiveness of ring-like preparations from the gastro-oesophageal junction to contractile stimulation was unaltered by acid challenge. Taurodeoxycholic acid decreased the responsiveness of circular oesophageal preparations to KCl, an effect that was exacerbated by luminal acidity. On the contrary, although the relaxant ability of the rat oesophagus did not change, acid challenge increased the relaxant efficacy of sodium nitroprusside and isoprenaline in strips of the gastro-oesophageal junction. A significant decrease in transepithelial electrical resistance was seen when the oesophageal mucosa was challenged at pH 1 but not at pH 4. Treatment with alginate blunted the deleterious effects of acid challenge on transepithelial electrical resistance and the responsiveness of oesophageal preparations to KCl. The present findings support the notion that luminal acidity is an important factor that disrupts barrier function in the oesophagus to allow the diffusion of noxious agents, such as bile acid, that alter the contractile status of the oesophagus.


Assuntos
Mucosa Esofágica/fisiopatologia , Esôfago/fisiopatologia , Contração Muscular/fisiologia , Músculo Liso/fisiopatologia , Animais , Impedância Elétrica , Refluxo Gastroesofágico/fisiopatologia , Concentração de Íons de Hidrogênio , Masculino , Ratos , Ratos Wistar
2.
Clin Exp Pharmacol Physiol ; 46(1): 40-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30229988

RESUMO

ß-Phenylethylamine (ß-PEA) is a trace amine with chemical proximity to biogenic amines and amphetamines. It is an endogenous agonist of trace amine-associated receptors (TAARs) that acts as a neuromodulator of classic neurotransmitters in the central nervous system. At high concentrations, ß-PEA contracts smooth muscle, and a role for TAARs in these responses has been postulated. The high dietary intake of trace amines has been associated with such symptoms as hypertension and migraine, especially after the intake of foods containing such compounds. In gastrointestinal tissues, TAAR expression was reported, although the effect of ß-PEA on gastric contractile behaviour is unknown. Here, isolated strips that were obtained from the rat gastric fundus were stimulated with high micromolar concentrations of ß-PEA. Under resting tonus, ß-PEA induced contractions. In contrast, when the strips were previously contracted with KCl, a relaxant response to ß-PEA was observed. The contractile effect of ß-PEA was inhibited by 5-hydroxytryptamine (5-HT) receptor antagonists (i.e., cyproheptadine and ketanserin) but not by the TAAR1 antagonist EPPTB. In gastric fundus strips that were previously contracted with 80 mmol/L KCl, the relaxant effect of ß-PEA intensified in the presence of 5-HT receptor antagonists, which was inhibited by EPPTB and the adenylyl cyclase inhibitor MDL-12,330A. The guanylyl cyclase inhibitor ODQ did not alter the relaxant effects of ß-PEA. In conclusion, ß-PEA exerted dual contractile and relaxant effects on rat gastric fundus. The contractile effect appeared to involve the recruitment of 5-HT receptors, and the relaxant effect of ß-PEA on KCl-elicited contractions likely involved TAAR1 .


Assuntos
Fundo Gástrico/efeitos dos fármacos , Fundo Gástrico/fisiologia , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Fenetilaminas/farmacologia , Animais , Fundo Gástrico/metabolismo , Contração Muscular/efeitos dos fármacos , Cloreto de Potássio/farmacologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Serotonina/metabolismo
3.
Exp Physiol ; 102(12): 1607-1618, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28929535

RESUMO

NEW FINDINGS: What is the central question of this study? Acute acidosis that results from short-term exercise is involved in delayed gastric emptying in rats and the lower responsiveness of gastric fundus strips to carbachol. Does extracellular acidosis decrease responsiveness to carbachol in tissues of sedentary rats? How? What is the main finding and its importance? Extracellular acidosis inhibits cholinergic signalling in the rat gastric fundus by selectively influencing the Gq/11 protein signalling pathway. Acute acidosis that results from short-term exercise delays gastric emptying in rats and decreases the responsiveness to carbachol in gastric fundus strips. The regulation of cytosolic Ca2+ concentrations appears to be a mechanism of action of acidosis. The present study investigated the way in which acidosis interferes with gastric smooth muscle contractions. Rat gastric fundus isolated strips at pH 6.0 presented a lower magnitude of carbachol-induced contractions compared with preparations at pH 7.4. This lower magnitude was absent in carbachol-stimulated duodenum and KCl-stimulated gastric fundus strips. In Ca2+ -free conditions, repeated contractions that were induced by carbachol progressively decreased, with no influence of extracellular pH. In fundus strips, CaCl2 -induced contractions were lower at pH 6.0 than at pH 7.4 but only when stimulated in the combined presence of carbachol and verapamil. In contrast, verapamil-sensitive contractions that were induced by CaCl2 in the presence of KCl did not change with pH acidification. In Ca2+ store-depleted preparations that were treated with thapsigargin, the contractions that were induced by extracellular Ca2+ restoration were smaller at pH 6.0 than at pH 7.4, but relaxation that was induced by SKF-96365 (an inhibitor of store-operated Ca2+ entry) was unaltered by extracellular acidification. At pH 6.0, the phospholipase C inhibitor U-73122 relaxed carbachol-induced contractions less than at pH 7.4, and this phenomenon was absent in tissue that was treated with the RhoA kinase blocker Y-27632. Thus, extracellular acidosis inhibited pharmacomechanical coupling in gastric fundus by selectively inhibiting the Gq/11 protein signalling pathway, whereas electromechanical coupling remained functionally preserved.


Assuntos
Acidose/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Fundo Gástrico/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Fundo Gástrico/metabolismo , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Masculino , Músculo Liso/metabolismo , Ratos Wistar
4.
Eur J Pharmacol ; 908: 174339, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265293

RESUMO

This study tested the effects of ß-methylphenylethylamine (ß-MPEA) and octopamine on contractile parameters of the gastrointestinal tract in rats. We hypothesized that some of their effects result from interactions with trace amine (TA)-associated receptors or serotoninergic 5-hydroxytryptamine (5-HT) receptors. ß-MPEA-induced contractions in rat gastric fundus strips under resting tonus conditions, but induced relaxation in preparations that were previously contracted with carbachol. Octopamine relaxed gastric fundus strips maintained at resting tonus or contracted with carbachol. The contractile effect of ß-MPEA was reduced by cyproheptadine and methiothepin, antagonists of excitatory 5-HT receptors. The relaxing effect of ß-MPEA on gastric fundus was insensitive to pretreatment with N-(3-ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) and tropisetron, antagonists of TA1 and 5-HT4 receptors, respectively. Both EPPTB and tropisetron inhibited the relaxant effects of octopamine on carbachol-contracted preparations. Contrarily, EPPTB did not reduce the relaxant effects of RO5263397 (TA1 agonist) or zacopride (5-HT4 agonist). Octopamine, but not ß-MPEA, delayed the gastrointestinal transit of a liquid test meal in awaken rats. In isolated preparations of the small intestine under resting conditions, ß-MPEA did not alter the basal tonus, but octopamine relaxed it. Intestinal preparations previously contracted with carbachol relaxed after the addition of octopamine and decreased the magnitude of their spontaneous rhythmic contractions in a tropisetron-dependent manner. Thus, ß-MPEA and octopamine exerted pharmacological actions on the rat gastrointestinal tract. The excitatory effects of ß-MPEA involved 5-HT receptors. Octopamine inhibited the rat gut contractility through the likely involvement of 5-HT4 and TA receptors. Overall, octopamine effectively inhibited rat gastrointestinal transit.


Assuntos
Anfetaminas , Octopamina , Animais , Fundo Gástrico , Contração Muscular , Relaxamento Muscular , Músculo Liso , Ratos , Receptores de Serotonina
5.
Naunyn Schmiedebergs Arch Pharmacol ; 393(1): 43-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31420719

RESUMO

Neryl butyrate is a constituent of volatile oils obtained from aromatic plants. Aliphatic organic compound analogues chemically close to neryl butyrate possess vasodilator properties in rat aorta. To evaluate whether neryl butyrate has relaxing properties, this study tested its effects on isolated rat aorta. Unlike the analogues, neryl butyrate did not show relaxant profile in aortic rings precontracted with phenylephrine, but induced a contraction when it stimulated aortic rings under resting tonus. The contractile effect augmented in endothelium-denuded aortic rings. Treatment of endothelium-intact preparations with the nitric oxide synthase inhibitor L-NAME or the guanylyl cyclase inhibitor ODQ also augmented the contractile effect of neryl butyrate. Such phenomenon was absent in the presence of the cyclooxygenase inhibitor indomethacin. Contractile responses decreased in the presence of verapamil, a L-type Ca2+ channel blocker, or when Ca2+ was removed from the extracellular solution. Antagonists of α-adrenergic receptors (prazosin and yohimbine), but not the thromboxane-prostanoid receptor seratrodast, reversed the contraction induced by neryl butyrate. The α1A selective antagonist RS-17053 antagonized the neryl butyrate-induced contraction. The contraction caused by neryl butyrate was decreased by inhibiting the phospholipase C or the rho-associated kinase with U-73122 or Y-27632, respectively. Injected intravenously to awake rats, neryl butyrate induced arterial hypotension and bradycardia. Decreased frequency was also present in isolated right atrium preparations. In conclusion, the contractile effects of neryl butyrate were inhibited by α-adrenergic antagonists, indicating the involvement of α-adrenoceptors in the mechanism of action. In vivo, neryl butyrate caused hypotension, suggesting that other systemic influence than vasoconstriction may occur.


Assuntos
Aorta Torácica/efeitos dos fármacos , Butiratos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Amidas/farmacologia , Animais , Aorta Torácica/fisiologia , Cálcio/farmacologia , Estrenos/farmacologia , Átrios do Coração/efeitos dos fármacos , Técnicas In Vitro , Masculino , Fenilefrina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirrolidinonas/farmacologia , Ratos Wistar
6.
Toxicon ; 184: 180-191, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585218

RESUMO

In Colombia, Lachesis acrochorda causes 2-3% of all snake envenomations. The accidents promote a high mortality rate (90%) due to blood and cardiovascular complications. Here, the effects of the snake venom of L. acrochorda (SVLa) were analyzed on human blood cells and on cardiovascular parameters of rats. SVLa induced blood coagulation, as measured by the prothrombin time test, but did not reduce the cell viability of neutrophils and platelets evaluated by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction assay and by the lactate dehydrogenase (LDH) enzyme assay. In fact, SVLa increased the absorbance in tests made with platelets subjected to the MTT assay. SVLa induced platelet aggregation whose magnitude was comparable to that of the positive control adenosine diphosphate (ADP), and occurred earlier with increasing SVLa concentration. Acetylsalicylic acid (ASA, a cyclooxygenase inhibitor) or clopidogrel (an ADP receptor blocker) inhibited the aggregating effect of SVLa. Inhibition of SVLa-elicited platelet aggregation also resulted from the treatment with disodium ethylenediaminetetraacetate (Na2-EDTA; metalloproteinase inhibitor) and with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF, serine protease inhibitor). In isolated right atrium of rats, SVLa increased slightly, but significantly, the magnitude of the spontaneous contractions and, in isolated rat aorta, SVLa relaxed KCl- or phenylephrine-induced contractions. In vivo, SVLa induced hypotension and bradycardia in rats, with detection of hemorrhage in pulmonary and renal tissues. Altogether, under experimental conditions, SVLa induced blood coagulation, platelet aggregation, hypotension and bradycardia. Part of the effects presented here may be explained by the presence of snake venom metalloproteinases (SVMPs) and snake venom serine proteases (SVSPs), constituents of SVLa.


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Venenos de Víboras/toxicidade , Viperidae , Animais , Células Sanguíneas , Coagulação Sanguínea , Plaquetas , Colômbia , Fibrinogênio , Hemorragia , Humanos , Hipotensão , Metaloproteases , Agregação Plaquetária , Tempo de Protrombina , Ratos , Serina Endopeptidases , Serina Proteases , Inibidores de Serina Proteinase , Mordeduras de Serpentes
7.
Fundam Clin Pharmacol ; 33(6): 612-620, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31012153

RESUMO

A group of nitro compounds contains a benzene ring in a short aliphatic chain with the NO2 group, property that supposedly favors its vasodilator profile. In this study, we evaluated in isolated rat aorta the effects of 1-nitro-2-propylbenzene (NPB), a nitro compound containing the NO2 in the aromatic ring. In aorta precontracted with KCl, NPB (1-3000 µm) induced full endothelium-independent relaxation. In endothelium-intact preparations, phenylephrine-induced contractions were fully relaxed by NPB, effect unaltered by N(ω)-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). In the concentration range of 30-300 µm, NPB slightly but significantly potentiated the phenylephrine-induced contraction. Such potentiation was unaltered by the thromboxane-prostanoid receptor antagonist seratrodast, but was abolished by endothelium removal or by preincubation of endothelium-intact preparations with L-NAME, ODQ or by ruthenium red and HC-030031, blockers of subtype 1 of ankyrin transient receptor potential (TRPA1 ) channels. Verapamil exacerbated the potentiating effect of NPB. The potentiating effect was undetectable in preparations precontracted by 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U-46619). Relaxation was reduced by ruthenium red while it was enhanced by HC-030031. In conclusion, NPB has vasodilator properties but with a mechanism of action distinct from its analogues. Contrary to other nitro compounds, its relaxing effects did not involve recruitment of the guanylyl cyclase pathway. NPB has also endothelium-dependent potentiating properties on phenylephrine-induced contractions, a phenomenon that putatively required a role of endothelial TRPA1 channels. The present findings reinforce the notion that the functional group NO2 in the aliphatic chain of these nitro compounds determines favorably their vasodilator properties.


Assuntos
Aorta/efeitos dos fármacos , Endotélio Vascular/fisiologia , Nitrocompostos/farmacologia , Vasodilatadores/farmacologia , Animais , Aorta/fisiologia , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA