Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36501445

RESUMO

Fluoride is one of the main phytotoxic environmental pollutants, and high concentrations (10-30 mg L-1) are commonly detected in surface and groundwater. Little, however, is known about the effects of this pollutant on crops that require irrigation during their development, which, in addition to phytotoxicity, may cause negative human health effects. Thus, the aim of this study was to characterize the effects of potassium fluoride (KF) on the germination of lettuce seeds and identify the physiological and anatomical markers of this pollutant's action on plants exposed to it during growth. Initially, lettuce seeds were sown in gerboxes and soaked in solutions containing 0 mg L-1, 10 mg L-1, 20 mg L-1, and 30 mg L-1 KF. Plants grown in a greenhouse were treated daily with KF irrigation at the same KF concentrations for 40 days. KF exposure reduced the germination rate and germination speed index of lettuce seeds at 20 mg L-1 and 30 mg L-1, resulting in compromised root development at the highest KF concentration. Lettuce plants displayed a slight photosynthesis reduction and a significant photochemical efficiency decrease after exposures to all KF concentrations. Lower chlorophyll contents and nitrogen balance indices were observed in plants exposed to 30 mg L-1 KF. On the other hand, increases in phenolic compounds and malondialdehyde were noted with increasing KF concentrations. Lettuce plants can, therefore, accumulate fluoride in leaves when irrigated with KF-rich water. The investigated physiological and biochemical variables were proven to be adequate fluoride action biomarkers in lettuce plants and may become an important tool in the study of olericulture contaminants.

2.
Plants (Basel) ; 11(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35448742

RESUMO

Efficient methodologies for automated seed quality evaluations are important for the seed industry. Advanced seed technology research requires the use of adequate methods to ensure good seed performance under adverse environmental conditions; thus, providing producers with detailed, quick, and accurate information on structural seed integrity and ensuring vigorous production. To address this problem, this study aimed to determine Brachiaria brizantha (Marandu cv., Piatã cv. and Xaraés cv.) seed quality through radiographic imaging analyses associated with vigor tests and anatomical characterizations. Brachiaria seed cultivars displaying different physical and physiological attributes were selected and subjected to the 1000-seed weight test, water content determinations, X-ray analyses, germination tests, and anatomical characterizations. The X-ray analyses made it possible to establish a relationship between the X-ray images and other determined variables. Furthermore, the X-ray images can indicate evidence of internal and external damage that could later compromise germination. The Marandu and Piatã cultivars presented the highest germination percentages, germination speed indices, normal seedling development, and cellular structure preservation compared to the Xaraés cultivar. To summarize, X-ray analyses are efficient methods used for the selection of higher physical quality cultivars and can aid in the decision-making processes of companies and seed producers worldwide.

3.
PeerJ ; 10: e13434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602888

RESUMO

Background: Fluoride (F) is one of the main environmental pollutants, and high concentrations are commonly detected in the air and in both surface and groundwater. However, the effects of this pollutant on seed germination and on the initial growth of crop seedlings are still poorly understood. In this context, the aim of this study was to assess morphoanatomical, physiological and biochemical fluoride effect indicators in Phaseolus vulgaris L. seeds and seedlings. Methods: P. vulgaris seeds were exposed to a liquid potassium fluoride solution (KF, pH 6.0) at concentrations of 0 (control), 10, 20, 30 mg L-1 for 7 days. A completely randomized experimental design was applied, consisting of four treatments with four replications each. During the experimental period, physiological (7 days) anatomical and histochemical (2 days), biochemical and chemical (4 days) assessments. An analysis of variance was performed followed by Dunnett's test. to determine significant differences between the KF-exposed groups and control seeds; and a multivariate analysis was performed. Results: The germination parameters, and anatomical, morphological, physiological, biochemical and nutritional characteristics of the seedlings did not show negative effects from exposure to KF at the lowest doses evaluated. On the other hand, treatment with the highest dose of KF (30 mg L-1) resulted in a lower germination rate index and increase in abnormal seedlings, and higher electrical conductivity. A lower root length, magnesium content and photochemical efficiency were also observed. The exposure of P. vulgaris to KF, regardless the dose did not affect seeds anatomy and the accumulation of starch and proteins, in relation to the control group. Conclusions: Our findings demonstrated that P. vulgaris seedlings were tolerant to KF solutions up to 20 mg L-1, and sensitive when exposed to 30 mg KF L-1.


Assuntos
Phaseolus , Plântula , Fluoretos/farmacologia , Germinação , Phaseolus/química , Sementes/química
4.
Environ Sci Pollut Res Int ; 28(48): 68997-69011, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34286433

RESUMO

Pollutants inhibit thallus growth and development or alter the metabolism and associated anatomical and morphophysiological characteristics of lichens. Since agricultural matrices can act as sources of pollution by dispersing agrochemicals to vegetation fragments, this study tested the hypothesis that Parmotrema tinctorum can serve as the indicator of edge effect in such fragments. In other words, we assumed the impact of pollutant accumulation to be greater at the vegetation edges and explored the utility of this lichen as a bioindicator of pollutants dispersed from agricultural matrices. Differences in the anatomical layers of P. tinctorum thalli sampled from the edge and center of four vegetation fragments (CER, SSF, SSC, and ENP) were evaluated, and the effects of agricultural matrices on macro- and micronutrient levels, heavy metal levels, and photosynthetic pigment content were analyzed. Anatomical layers were thicker in P. tinctorum thalli from the edges of SSC and ENP, indicating the need for photobiont protection at these sites. Edge effect was observed on Al accumulation in the thallus, indicating dispersion of this metal from agricultural matrices and its greater impact in the edge populations. Edge effect was also evident on photosynthetic pigment content, macro- and micronutrient levels, and heavy metal concentration in the thallus, and the values reflected high ecological imbalance currently verified at the edge of ENP, an area of permanent protection. In areas within ENP, chlorophyll a/b ratio reflected stress factors acting on the thallus, indicating that even legally protected areas are not free from the impact of atmospheric pollutants. P. tinctorum may serve as an effective indicator of edge effects and may be used for biomonitoring pollutant dispersion from agricultural matrices.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Líquens , Metais Pesados , Agricultura , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Clorofila A , Monitoramento Ambiental , Florestas , Metais Pesados/análise , Parmeliaceae
5.
Plants (Basel) ; 8(9)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480407

RESUMO

Native Cerrado plants are exposed to soils with low pH and high availability of Al. In this study, we measured the Al content in adult plants, and investigated the effects of various Al doses on germination and early development of Eugenia dysenterica plants. For germination tests, the seeds were soaked in Al solution and evaluated for twenty days in growth chambers. In a second experiment, young plants were cultivated in hydroponic systems with various Al concentrations to evaluate the morphological, anatomical and physiological characteristics of E. dysenterica. Anatomical changes and low germinative vigor were observed in seeds germinated in 600 and 800 µmol Al3+ L-1. In the hydroponic system, 200 µmol Al3+ L-1 stimulated root growth in young plants. The activity of antioxidant enzymes and the accumulation of phenolic compounds were greatest at the highest Al doses, preventing changes in gas exchange and chlorophyll a fluorescence. Starch grain accumulation was noted in plant cells exposed to 200 and 400 µmol Al3+ L-1. Adult E. dysenterica trees also accumulated Al in leaves, bark and seeds. These data suggest that E. dysenterica is tolerant to Al.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA