Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Appl Microbiol ; 126(2): 567-579, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30418694

RESUMO

AIMS: To investigate the genotypic diversity and enzymatic activity of yeast flora isolated from spontaneous fermenting saps of various palm trees (Borassus aethiopum, Raphia hookeri, Elaeis guineensis) tapped for palm wines. METHODS AND RESULTS: PCR-restriction fragment length polymorphism of ITS-5.8S rDNA combined to 26S rRNA gene and/or the partial ACT1 gene sequencing were applied for yeast characterization, and their enzymatic profiles assessed by using API ZYM kits. Thirteen genera and 23 species were identified, with the highest diversity (14 species) in raffia wine. Saccharomyces cerevisiae was dominant and common to all palm wines. Some potentially pathogenic yeasts were also isolated. The majority of tested strains displayed high amylo-peptidase, phosphatase, ß-glucosidase and α-glucosidase activities and esterase activity. CONCLUSIONS: Diverse yeast species colonized palm wines, among which some were related to a specific type of wine and the majority of them have the ability to digest starch, sugar, protein or lipid. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is a first step in understanding the significance of indigenous yeast flora of palm wines from Côte d'Ivoire. This knowledge is important as a tool for establishing new indigenous yeast collection; which could be used for the product quality improvement and as enzyme sources for biotechnological purposes.


Assuntos
Vinho/microbiologia , Leveduras/enzimologia , Leveduras/isolamento & purificação , Arecaceae , Biodiversidade , Côte d'Ivoire , Fermentação , Genótipo , Saccharomyces cerevisiae/isolamento & purificação , Leveduras/genética
2.
Persoonia ; 35: 242-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26823635

RESUMO

The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial ß -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.

3.
Appl Environ Microbiol ; 78(9): 3256-65, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22344648

RESUMO

The hybrid nature of lager-brewing yeast strains has been known for 25 years; however, yeast hybrids have only recently been described in cider and wine fermentations. In this study, we characterized the hybrid genomes and the relatedness of the Eg8 industrial yeast strain and of 24 Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrid yeast strains used for wine making in France (Alsace), Germany, Hungary, and the United States. An array-based comparative genome hybridization (aCGH) profile of the Eg8 genome revealed a typical chimeric profile. Measurement of hybrids DNA content per cell by flow cytometry revealed multiple ploidy levels (2n, 3n, or 4n), and restriction fragment length polymorphism analysis of 22 genes indicated variable amounts of S. kudriavzevii genetic content in three representative strains. We developed microsatellite markers for S. kudriavzevii and used them to analyze the diversity of a population isolated from oaks in Ardèche (France). This analysis revealed new insights into the diversity of this species. We then analyzed the diversity of the wine hybrids for 12 S. cerevisiae and 7 S. kudriavzevii microsatellite loci and found that these strains are the products of multiple hybridization events between several S. cerevisiae wine yeast isolates and various S. kudriavzevii strains. The Eg8 lineage appeared remarkable, since it harbors strains found over a wide geographic area, and the interstrain divergence measured with a (δµ)(2) genetic distance indicates an ancient origin. These findings reflect the specific adaptations made by S. cerevisiae/S. kudriavzevii cryophilic hybrids to winery environments in cool climates.


Assuntos
Quimera , Microbiologia Industrial , Saccharomyces/crescimento & desenvolvimento , Saccharomyces/genética , Vinho/microbiologia , Hibridização Genômica Comparativa , DNA Fúngico/química , DNA Fúngico/genética , Evolução Molecular , França , Variação Genética , Alemanha , Hungria , Análise em Microsséries , Repetições de Microssatélites , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Recombinação Genética , Saccharomyces/metabolismo , Análise de Sequência de DNA , Estados Unidos
4.
Nucleic Acids Res ; 31(12): 3081-91, 2003 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12799436

RESUMO

The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand.


Assuntos
DNA Mitocondrial/genética , Saccharomyces/genética , Sequência de Bases , DNA Intergênico , DNA Mitocondrial/química , Endodesoxirribonucleases/metabolismo , Endorribonucleases/genética , Ordem dos Genes , Genes de RNAr , Íntrons , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , RNA/química , RNA/metabolismo , RNA Catalítico/genética , RNA Mitocondrial , RNA de Transferência/genética , Sequências Repetitivas de Ácido Nucleico , Ribonuclease P , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Especificidade da Espécie , Sítio de Iniciação de Transcrição , Transcrição Gênica
5.
Biochim Biophys Acta ; 1008(1): 45-51, 1989 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-2655707

RESUMO

We have investigated conditions in vitro for the analysis of replication of ultraviolet-irradiated ColE1 DNA in cell extracts from Escherichia coli. In wild-type extracts substantial replication was obtained; however, this could be greatly reduced when the irradiated plasmid was incubated in extracts prepared from a uvrA recB strain. Modest stimulation of DNA replication was then obtained by addition of extracts from the same strain previously ultraviolet-irradiated. However, this stimulating activity proved to be highly unstable and has so far proved unsuitable as a basis for purification of specific factors involved in replication on irradiated templates. We also investigated the mutagenesis of pBR325 DNA replicated in cell extracts from a strain expressing the SOS response constitutively. Conditions for efficient recovery and transformation by plasmid DNA replicated in vitro were determined and, using this system, a more than 10-fold increase in reversion frequency of a mutation in the tet gene, compared to that with wild-type extracts, was obtained. This mutagenesis appeared to be independent of replication, indicating the presence of an error-prone repair system in the extract. This effect was not enhanced by the presence of the muc gene products in the extracts. This suggests that the observed mutagenesis is also independent of the lexA-controlled umuCD genes.


Assuntos
Plasmídeos de Bacteriocinas , Reparo do DNA , Replicação do DNA , Escherichia coli/genética , Mutação , Plasmídeos , Plasmídeos de Bacteriocinas/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Bacteriano/biossíntese , DNA Bacteriano/isolamento & purificação , Escherichia coli/efeitos da radiação , Cinética , Plasmídeos/efeitos da radiação , Resposta SOS em Genética , Raios Ultravioleta
6.
J Mol Biol ; 228(1): 30-40, 1992 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-1447789

RESUMO

We have used an antibody to a previously identified 180 kDa (Hmp1) protein in Escherichia coli to clone the corresponding gene, which encodes a polypeptide of 114 kDa that has a mobility equivalent to 180 kDa in SDS/PAGE. We have demonstrated that the 180 kDa polypeptide is the primary gene product and not due to aggregation with other molecules. Moreover, our data indicate that the highly charged C-terminal region of the protein is responsible for its anomalous behaviour when analysed by SDS/PAGE. The hmp1 gene is in fact identical to ams (abnormal mRNA stability), also designated rne (RnaseE), and reported to have an ORF of 91 kDa. This discrepancy with the data in this paper can be ascribed to the omission of two bases in the previously reported sequence, generating an apparent stop codon. We previously demonstrated that the 180 kDa Hmp1/Ams protein cross reacted with both a polyclonal antibody and a monoclonal antibody raised against a yeast heavy chain myosin. However, we could detect no homology with myosin genes in the ams/hmp1 sequence. From the DNA sequence data, we identified a putative nucleotide binding site and a transmembrane domain in the N-terminal half of the molecule. In the C-terminal half, which appears to constitute a separate domain dominated by proline and charged amino acids, we also identified a region homologous to the highly conserved 70 kDa snRNP protein, involved in RNA splicing in eukaryotes. This feature would be consistent with reports that ams encodes RNaseE, an enzyme required for the processing of several stable RNAs in E. coli.


Assuntos
Proteínas de Bactérias/genética , Proteínas Cromossômicas não Histona , Endorribonucleases , Proteínas de Escherichia coli , Escherichia coli/genética , Genes Bacterianos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Bacteriano , Dados de Sequência Molecular , Mapeamento por Restrição
7.
J Mol Biol ; 305(2): 203-17, 2001 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-11124900

RESUMO

Autonomously replicating sequences (ARSs) in the yeast Yarrowia lipolytica require two components: an origin of replication (ORI) and centromere (CEN) DNA, both of which are necessary for extrachromosomal maintenance. To investigate this cooperation in more detail, we performed a screen for genomic sequences able to confer high frequency of transformation to a plasmid-borne ORI. Our results confirm a cooperation between ORI and CEN sequences to form an ARS, since all sequences identified in this screen displayed features of centromeric DNA and included the previously characterized CEN1-1, CEN3-1 and CEN5-1 fragments. Two new centromeric DNAs were identified as they are unique, map to different chromosomes (II and IV) and induce chromosome breakage after genomic integration. A third sequence, which is adjacent to, but distinct from the previously characterized CEN1-1 region was isolated from chromosome I. Although these CEN sequences do not share significant sequence similarities, they display a complex pattern of short repeats, including conserved blocks of 9 to 14 bp and regions of dyad symmetry. Consistent with their A+T-richness and strong negative roll angle, Y. lipolytica CEN-derived sequences, but not ORIs, were capable of binding isolated Drosophila nuclear scaffolds. However, a Drosophila scaffold attachment region that functions as an ARS in other yeasts was unable to confer autonomous replication to an ORI-containing plasmid. Deletion analysis of CEN1-1 showed that the sequences responsible for the induction of chromosome breakage could be eliminated without compromising extrachromosomal maintenance. We propose that, while Y. lipolytica CEN DNA is essential for plasmid maintenance, this function can be supplied by several sub-fragments which, together, form the active chromosomal centromere. This complex organization of Y. lipolytica centromeres is reminiscent of the regional structures described in the yeast Schizosaccharomyces pombe or in multicellular eukaryotes.


Assuntos
Centrômero/genética , Segregação de Cromossomos/genética , Origem de Replicação/genética , Saccharomycetales/genética , Sequência de Bases , Sítios de Ligação , Centrômero/metabolismo , Quebra Cromossômica/genética , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Clonagem Molecular , Sequência Conservada/genética , Replicação do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Matriz Nuclear/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Deleção de Sequência/genética , Transformação Genética
8.
FEBS Lett ; 487(1): 37-41, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152880

RESUMO

Saccharomyces bayanus var. uvarum investigated here is the species closest to Saccharomyces cerevisiae. Random sequence tags (RSTs) allowed us to identify homologues to 2789 open reading frames (ORFs) in S. cerevisiae, ORFs duplicated in S. uvarum but not in S. cerevisiae, centromeres, tRNAs, homologues of Ty1/2 and Ty4 retrotransposons, and a complete rDNA repeat. Only 13 RSTs seem to be homologous to sequences in other organisms but not in S. cerevisiae. As the synteny between the two species is very high, cases in which synteny is lost suggest special mechanisms of genome evolution. The corresponding RSTs revealed that S. uvarum can exist without any S. cerevisiae DNA introgression. Accession numbers are from AL397139 to AL402278 in the EMBL databank.


Assuntos
Ordem dos Genes , Genoma Fúngico , Saccharomyces/genética , Ascomicetos/genética , Centrômero , Cromossomos Fúngicos , Mapeamento de Sequências Contíguas , Dados de Sequência Molecular , Retroelementos/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
9.
FEBS Lett ; 487(1): 42-6, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152881

RESUMO

Random sequence tags were obtained from a genomic DNA library of Saccharomyces exiguus. The mitochondrial genome appeared to be at least 25.7 kb in size, with a different organization compared to Saccharomyces cerevisiae. An unusual putative 953 bp long terminal repeated element associated to Ty3 was found. A set of 1451 genes was identified homologous to S. cerevisiae open reading frames. Only five genes were identified outside the S. cerevisiae taxon, confirming that S. exiguus is phylogenetically closely related to S. cerevisiae. Unexpectedly, numerous duplicated genes were found whereas they are unique in S. cerevisiae. The sequences are deposited at EMBL under the accession numbers: AL407377-AL409955.


Assuntos
Genoma Fúngico , Saccharomyces/genética , Ascomicetos/genética , Elementos de DNA Transponíveis , DNA Mitocondrial , DNA Ribossômico , Dosagem de Genes , Duplicação Gênica , Ordem dos Genes , Genes Fúngicos , Genômica/métodos , Dados de Sequência Molecular , Alinhamento de Sequência
10.
FEBS Lett ; 487(1): 47-51, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152882

RESUMO

The genome of Saccharomyces servazzii was analyzed with 2570 random sequence tags totalling 2.3 Mb. BLASTX comparisons revealed a minimum of 1420 putative open reading frames with significant homology to Saccharomyces cerevisiae (58% aa identity on average), two with Schizosaccharomyces pombe and one with a human protein, confirming that S. servazzii is closely related to S. cerevisiae. About 25% of the S. servazzii genes were identified, assuming that the gene complement is identical in both yeasts. S. servazzii carries very few transposable elements related to Ty elements in S. cerevisiae. Most of the mitochondrial genes were identified in eight contigs altogether spanning 25 kb for a predicted size of 29 kb. A significant match with the Kluyveromyces lactis linear DNA plasmid pGKL-1 encoded RF4 killer protein suggests that a related plasmid exists in S. servazzii. The sequences have been deposited with EMBL under the accession numbers AL402279-AL404848.


Assuntos
Genoma Fúngico , Saccharomyces/genética , Ascomicetos/genética , DNA Mitocondrial , DNA Ribossômico , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Duplicação Gênica , Humanos , Íntrons , Dados de Sequência Molecular , Proteínas Nucleares/genética , Plasmídeos/genética , Retroelementos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Spliceossomos/genética
11.
FEBS Lett ; 487(1): 56-60, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152884

RESUMO

The genome of Saccharomyces kluyveri was explored through 2528 random sequence tags with an average length of 981 bp. The complete nuclear ribosomal DNA unit was found to be 8656 bp in length. Sequences homologous to retroelements of the gypsy and copia types were identified as well as numerous solo long terminal repeats. We identified at least 1406 genes homologous to Saccharomyces cerevisiae open reading frames, with on average 58.1% and 72.4% amino acid identity and similarity, respectively. In addition, by comparison with completely sequenced genomes and the SwissProt database, we found 27 novel S. kluyveri genes. Most of these genes belong to pathways or have functions absent from S. cerevisiae, such as the catabolic pathway of purines or pyrimidines, melibiose fermentation, sorbitol utilization, or degradation of pollutants. The sequences are deposited in EMBL under the accession numbers AL404849-AL407376.


Assuntos
Genoma Fúngico , Saccharomyces/genética , Ascomicetos/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , RNA de Transferência/genética , Sequências Repetitivas de Ácido Nucleico
12.
FEBS Lett ; 487(1): 82-6, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152889

RESUMO

By analyzing 2830 random sequence tags (RSTs), totalling 2.7 Mb, we explored the genome of the marine, osmo- and halotolerant yeast, Debaryomyces hansenii. A contig 29 kb in length harbors the entire mitochondrial genome. The genes encoding Cox1, Cox2, Cox3, Cob, Atp6, Atp8, Atp9, several subunits of the NADH dehydrogenase complex 1 and 11 tRNAs were unambiguously identified. An equivalent number of putative transposable elements compared to Saccharomyces cerevisiae were detected, the majority of which are more related to higher eukaryote copia elements. BLASTX comparisons of RSTs with databases revealed at least 1119 putative open reading frames with homology to S. cerevisiae and 49 to other genomes. Specific functions, including transport of metabolites, are clearly over-represented in D. hansenii compared to S. cerevisiae, consistent with the observed difference in physiology of the two species. The sequences have been deposited with EMBL under the accession numbers AL436045-AL438874.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Elementos de DNA Transponíveis , DNA Mitocondrial , DNA Ribossômico , Proteínas Fúngicas/classificação , Duplicação Gênica , Dados de Sequência Molecular , Proteínas Nucleares/genética , RNA de Transferência , Saccharomyces cerevisiae/genética
13.
FEBS Lett ; 487(1): 95-100, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152892

RESUMO

A total of 4940 random sequence tags of the dimorphic yeast Yarrowia lipolytica, totalling 4.9 Mb, were analyzed. BLASTX comparisons revealed at least 1229 novel Y. lipolytica genes 1083 genes having homology with Saccharomyces cerevisiae genes and 146 with genes from various other genomes. This confirms the rapid sequence evolution assumed for Y. lipolytica. Functional analysis of newly discovered genes revealed that several enzymatic activities were increased compared to S. cerevisiae, in particular, transport activities, ion homeostasis, and various metabolism pathways. Most of the mitochondrial genes were identified in contigs spanning more than 47 kb. Matches to retrotransposons were observed, including a S. cerevisiae Ty3 and a LINE element. The sequences have been deposited with EMBL under the accession numbers AL409956-AL414895.


Assuntos
Genoma Fúngico , Leveduras/genética , Elementos de DNA Transponíveis , DNA Mitocondrial , DNA Ribossômico , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Duplicação Gênica , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
14.
FEBS Lett ; 487(1): 17-30, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152878

RESUMO

The primary analysis of the sequences for our Hemiascomycete random sequence tag (RST) project was performed using a combination of classical methods for sequence comparison and contig assembly, and of specifically written scripts and computer visualization routines. Comparisons were performed first against DNA and protein sequences from Saccharomyces cerevisiae, then against protein sequences from other completely sequenced organisms and, finally, against protein sequences from all other organisms. Blast alignments were individually inspected to help recognize genes within our random genomic sequences despite the fact that only parts of them were available. For each yeast species, validated alignments were used to infer the proper genetic code, to determine codon usage preferences and to calculate their degree of sequence divergence with S. cerevisiae. The quality of each genomic library was monitored from contig analysis of the DNA sequences. Annotated sequences were submitted to the EMBL database, and the general annotation tables produced served as a basis for our comparative description of the evolution, redundancy and function of the Hemiascomycete genomes described in other articles of this issue.


Assuntos
Ascomicetos/genética , Genômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos , Processamento Eletrônico de Dados/métodos , Biblioteca Gênica , Código Genético , Genoma Fúngico , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
15.
FEBS Lett ; 487(1): 3-12, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152876

RESUMO

The identification of molecular evolutionary mechanisms in eukaryotes is approached by a comparative genomics study of a homogeneous group of species classified as Hemiascomycetes. This group includes Saccharomyces cerevisiae, the first eukaryotic genome entirely sequenced, back in 1996. A random sequencing analysis has been performed on 13 different species sharing a small genome size and a low frequency of introns. Detailed information is provided in the 20 following papers. Additional tables available on websites describe the ca. 20000 newly identified genes. This wealth of data, so far unique among eukaryotes, allowed us to examine the conservation of chromosome maps, to identify the 'yeast-specific' genes, and to review the distribution of gene families into functional classes. This project conducted by a network of seven French laboratories has been designated 'Génolevures'.


Assuntos
Ascomicetos/genética , Evolução Molecular , Genoma Fúngico , Filogenia , Ascomicetos/fisiologia , Genômica/métodos , Dados de Sequência Molecular , RNA Ribossômico , Análise de Sequência de DNA
16.
FEBS Lett ; 487(1): 31-6, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152879

RESUMO

Since its completion more than 4 years ago, the sequence of Saccharomyces cerevisiae has been extensively used and studied. The original sequence has received a few corrections, and the identification of genes has been completed, thanks in particular to transcriptome analyses and to specialized studies on introns, tRNA genes, transposons or multigene families. In order to undertake the extensive comparative sequence analysis of this program, we have entirely revisited the S. cerevisiae sequence using the same criteria for all 16 chromosomes and taking into account publicly available annotations for genes and elements that cannot be predicted. Comparison with the other yeast species of this program indicates the existence of 50 novel genes in segments previously considered as 'intergenic' and suggests extensions for 26 of the previously annotated genes.


Assuntos
Genoma Fúngico , Saccharomyces cerevisiae/genética , Ascomicetos/genética , Cromossomos Fúngicos , DNA Intergênico , Genes Fúngicos , Família Multigênica , Fases de Leitura Aberta , RNA de Transferência/genética , Alinhamento de Sequência/métodos
17.
FEBS Lett ; 487(1): 101-12, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152893

RESUMO

We have analyzed the evolution of chromosome maps of Hemiascomycetes by comparing gene order and orientation of the 13 yeast species partially sequenced in this program with the genome map of Saccharomyces cerevisiae. From the analysis of nearly 8000 situations in which two distinct genes having homologs in S. cerevisiae could be identified on the sequenced inserts of another yeast species, we have quantified the loss of synteny, the frequency of single gene deletion and the occurrence of gene inversion. Traces of ancestral duplications in the genome of S. cerevisiae could be identified from the comparison with the other species that do not entirely coincide with those identified from the comparison of S. cerevisiae with itself. From such duplications and from the correlation observed between gene inversion and loss of synteny, a model is proposed for the molecular evolution of Hemiascomycetes. This model, which can possibly be extended to other eukaryotes, is based on the reiteration of events of duplication of chromosome segments, creating transient merodiploids that are subsequently resolved by single gene deletion events.


Assuntos
Ascomicetos/genética , Mapeamento Cromossômico/métodos , Cromossomos Fúngicos , Ordem dos Genes , Genômica/métodos , Biologia Computacional/métodos , Deleção de Genes , Duplicação Gênica , Saccharomyces cerevisiae/genética
18.
FEBS Lett ; 487(1): 113-21, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152894

RESUMO

Comparisons of the 6213 predicted Saccharomyces cerevisiae open reading frame (ORF) products with sequences from organisms of other biological phyla differentiate genes commonly conserved in evolution from 'maverick' genes which have no homologue in phyla other than the Ascomycetes. We show that a majority of the 'maverick' genes have homologues among other yeast species and thus define a set of 1892 genes that, from sequence comparisons, appear 'Ascomycetes-specific'. We estimate, retrospectively, that the S. cerevisiae genome contains 5651 actual protein-coding genes, 50 of which were identified for the first time in this work, and that the present public databases contain 612 predicted ORFs that are not real genes. Interestingly, the sequences of the 'Ascomycetes-specific' genes tend to diverge more rapidly in evolution than that of other genes. Half of the 'Ascomycetes-specific' genes are functionally characterized in S. cerevisiae, and a few functional categories are over-represented in them.


Assuntos
Ascomicetos/genética , Genes Fúngicos , Sequência de Bases , Sequência Conservada , Evolução Molecular , Variação Genética , Saccharomyces cerevisiae/genética , Especificidade da Espécie
19.
FEBS Lett ; 487(1): 122-33, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152895

RESUMO

We have evaluated the degree of gene redundancy in the nuclear genomes of 13 hemiascomycetous yeast species. Saccharomyces cerevisiae singletons and gene families appear generally conserved in these species as singletons and families of similar size, respectively. Variations of the number of homologues with respect to that expected affect from 7 to less than 24% of each genome. Since S. cerevisiae homologues represent the majority of the genes identified in the genomes studied, the overall degree of gene redundancy seems conserved across all species. This is best explained by a dynamic equilibrium resulting from numerous events of gene duplication and deletion rather than by a massive duplication event occurring in some lineages and not in others.


Assuntos
Ascomicetos/genética , Evolução Molecular , Genes Fúngicos , Sequência de Bases , Sequência Conservada , Variação Genética , Genoma Fúngico , Modelos Genéticos , Família Multigênica , Saccharomyces cerevisiae/genética , Telômero/genética
20.
FEBS Lett ; 487(1): 134-49, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-11152896

RESUMO

We explored the biological diversity of hemiascomycetous yeasts using a set of 22000 newly identified genes in 13 species through BLASTX searches. Genes without clear homologue in Saccharomyces cerevisiae appeared to be conserved in several species, suggesting that they were recently lost by S. cerevisiae. They often identified well-known species-specific traits. Cases of gene acquisition through horizontal transfer appeared to occur very rarely if at all. All identified genes were ascribed to functional classes. Functional classes were differently represented among species. Species classification by functional clustering roughly paralleled rDNA phylogeny. Unequal distribution of rapidly evolving, ascomycete-specific, genes among species and functions was shown to contribute strongly to this clustering. A few cases of gene family amplification were documented, but no general correlation could be observed between functional differentiation of yeast species and variations of gene family sizes. Yeast biological diversity seems thus to result from limited species-specific gene losses or duplications, and for a large part from rapid evolution of genes and regulatory factors dedicated to specific functions.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Proteínas Fúngicas/genética , Amplificação de Genes , Variação Genética , Genômica/métodos , Filogenia , Saccharomyces cerevisiae , Homologia de Sequência do Ácido Nucleico , Software , Especificidade da Espécie , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA