Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Genomics ; 15: 236, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24670056

RESUMO

BACKGROUND: The rubber tree, Hevea brasiliensis, is a species native to the Brazilian Amazon region and it supplies almost all the world's natural rubber, a strategic raw material for a variety of products. One of the major challenges for developing rubber tree plantations is adapting the plant to biotic and abiotic stress. Transcriptome analysis is one of the main approaches for identifying the complete set of active genes in a cell or tissue for a specific developmental stage or physiological condition. RESULTS: Here, we report on the sequencing, assembling, annotation and screening for molecular markers from a pool of H. brasiliensis tissues. A total of 17,166 contigs were successfully annotated. Then, 2,191 Single Nucleotide Variation (SNV) and 1.397 Simple Sequence Repeat (SSR) loci were discriminated from the sequences. From 306 putative, mainly non-synonymous SNVs located in CDS sequences, 191 were checked for their ability to characterize 23 Hevea genotypes by an allele-specific amplification technology. For 172 (90%), the nucleotide variation at the predicted genomic location was confirmed, thus validating the different steps from sequencing to the in silico detection of the SNVs. CONCLUSIONS: This is the first study of the H. brasiliensis transcriptome, covering a wide range of tissues and organs, leading to the production of the first developed SNP markers. This process could be amplified to a larger set of in silico detected SNVs in expressed genes in order to increase the marker density in available and future genetic maps. The results obtained in this study will contribute to the H. brasiliensis genetic breeding program focused on improving of disease resistance and latex yield.


Assuntos
Genes de Plantas , Hevea/genética , Análise por Conglomerados , Mapeamento de Sequências Contíguas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Loci Gênicos , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Transcriptoma
2.
Mol Biol Rep ; 40(9): 5417-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23666150

RESUMO

In this work, we identified a gene from Theobroma cacao L. genome and cDNA libraries, named TcGlu2, that encodes a ß-1,3-1,4-glucanase. The TcGlu2 ORF was 720 bp in length and encoded a polypeptide of 239 amino acids with a molecular mass of 25.58 kDa. TcGlu2 contains a conserved domain characteristic of ß-1,3-1,4-glucanases and presented high protein identity with ß-1,3-1,4-glucanases from other plant species. Molecular modeling of TcGlu2 showed an active site of 13 amino acids typical of glucanase with ß-1,3 and 1,4 action mode. The recombinant cDNA TcGlu2 obtained by heterologous expression in Escherichia coli and whose sequence was confirmed by mass spectrometry, has a molecular mass of about 22 kDa (with His-Tag) and showed antifungal activity against the fungus Moniliophthora perniciosa, causal agent of the witches' broom disease in cacao. The integrity of the hyphae membranes of M. perniciosa, incubated with protein TcGlu2, was analyzed with propidium iodide. After 1 h of incubation, a strong fluorescence emitted by the hyphae indicating the hydrolysis of the membrane by TcGlu2, was observed. To our knowledge, this is the first study of a cacao ß-1,3-1,4-glucanase expression in heterologous system and the first analysis showing the antifungal activity of a ß-1,3-1,4-glucanase, in particular against M. perniciosa.


Assuntos
Agaricales/efeitos dos fármacos , Cacau/enzimologia , Glucana 1,3-beta-Glucosidase/farmacologia , Modelos Moleculares , Micélio/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Agaricales/crescimento & desenvolvimento , Cacau/microbiologia , Escherichia coli , Fluorescência , Glucana 1,3-beta-Glucosidase/genética , Espectrometria de Massas , Micélio/crescimento & desenvolvimento , Propídio , Proteínas Recombinantes/genética
3.
An Acad Bras Cienc ; 84(2): 469-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22652759

RESUMO

The enzyme chitinase from Moniliophthora perniciosa the causative agent of the witches' broom disease in Theobroma cacao, was partially purified with ammonium sulfate and filtration by Sephacryl S-200 using sodium phosphate as an extraction buffer. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes were obtained: ChitMp I, ChitMp II, ChitMp III and ChitMp IV. ChitMp I had an optimum temperature at 44-73ºC and an optimum pH at 7.0-8.4. ChitMp II had an optimum temperature at 45-73ºC and an optimum pH at 7.0-8.4. ChitMp III had an optimum temperature at 54-67ºC and an optimum pH at 7.3-8.8. ChitMp IV had an optimum temperature at 60ºC and an optimum pH at 7.0. For the computational biology, the primary sequence was determined in silico from the database of the Genome/Proteome Project of M. perniciosa, yielding a sequence with 564 bp and 188 amino acids that was used for the three-dimensional design in a comparative modeling methodology. The generated models were submitted to validation using Procheck 3.0 and ANOLEA. The model proposed for the chitinase was subjected to a dynamic analysis over a 1 ns interval, resulting in a model with 91.7% of the residues occupying favorable places on the Ramachandran plot and an RMS of 2.68.


Assuntos
Agaricales/enzimologia , Quitinases/biossíntese , Sequência de Aminoácidos , Quitinases/química , Quitinases/genética , Cromatografia em Gel , Modelos Biológicos , Dados de Sequência Molecular
4.
Biochim Biophys Acta ; 1804(1): 115-23, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19782157

RESUMO

Acyl-CoA binding protein (ACBP) is a housekeeping protein and is an essential protein in human cell lines and in Trypanosoma brucei. The ACBP of Moniliophthora perniciosa is composed of 104 amino acids and is possibly a non-classic isoform exclusively from Basidiomycetes. The M. perniciosa acbp gene was cloned, and the protein was expressed and purified. Acyl-CoA ester binding was analyzed by isoelectric focusing, native gel electrophoresis and isothermal titration calorimetry. Our results suggest an increasing affinity of ACBP for longer acyl-CoA esters, such as myristoyl-CoA to arachidoyl-CoA, and best fit modeling indicates two binding sites. ACBP undergoes a shift from a monomeric to a dimeric state, as shown by dynamic light scattering, fluorescence anisotropy and native gel electrophoresis in the absence and presence of the ligand. The protein's structure was determined at 1.6 A resolution and revealed a new topology for ACBP, containing five alpha-helices instead of four. alpha-helices 1, 2, 3 and 4 adopted a bundled arrangement that is unique from the previously determined four-helix folds of ACBP, while alpha-helices 1, 2, 4 and 5 formed a classical four-helix bundle. A MES molecule was found in the CoA binding site, suggesting that the CoA site could be a target for small compound screening.


Assuntos
Inibidor da Ligação a Diazepam/química , Acil Coenzima A/metabolismo , Agaricales/química , Agaricales/genética , Sequência de Aminoácidos , Cristalização , Inibidor da Ligação a Diazepam/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
5.
Mol Plant Microbe Interact ; 24(7): 839-48, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21405988

RESUMO

Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).


Assuntos
Agaricales/metabolismo , Agaricales/patogenicidade , Carboxiliases/biossíntese , Nicotiana , Ácido Oxálico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carboxiliases/genética , Morte Celular , Flammulina/enzimologia , Flammulina/genética , Formiatos/metabolismo , Necrose , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
6.
Mol Biol Rep ; 38(2): 1329-40, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20563648

RESUMO

The tropical tree Bixa orellana L. produces a range of secondary metabolites which biochemical and molecular biosynthesis basis are not well understood. In this work we have characterized a set of ESTs from a non-normalized cDNA library of B. orellana seeds to obtain information about the main developmental and metabolic processes taking place in developing seeds and their associated genes. After sequencing a set of randomly selected clones, most of the sequences were assigned with putative functions based on similarity, GO annotations and protein domains. The most abundant transcripts encoded proteins associated with cell wall (prolyl 4-hydroxylase), fatty acid (acyl carrier protein), and hormone/flavonoid (2OG-Fe oxygenase) synthesis, germination (MADS FLC-like protein) and embryo development (AP2/ERF transcription factor) regulation, photosynthesis (chlorophyll a-b binding protein), cell elongation (MAP65-1a), and stress responses (metallothionein- and thaumatin-like proteins). Enzymes were assigned to 16 different metabolic pathways related to both primary and secondary metabolisms. Characterization of two candidate genes of the bixin biosynthetic pathway, BoCCD and BoOMT, showed that they belong, respectively, to the carotenoid-cleavage dioxygenase 4 (CCD4) and caffeic acid O-methyltransferase (COMT) families, and are up-regulated during seed development. It indicates their involvement in the synthesis of this commercially important carotenoid pigment in seeds of B. orellana. Most of the genes identified here are the first representatives of their gene families in B. orellana.


Assuntos
Bixaceae/genética , Dioxigenases/genética , Etiquetas de Sequências Expressas , Metiltransferases/genética , Sementes/metabolismo , Biblioteca Gênica , Genes de Plantas , Modelos Genéticos , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fatores de Tempo
7.
Biometals ; 24(1): 59-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20838856

RESUMO

Cadmium (Cd) originating from atmospheric deposits, from industrial residues and from the application of phosphate fertilizers may accumulate in high concentrations in soil, water and food, thus becoming highly toxic to plants, animals and human beings. Once accumulated in an organism, Cd discharges and sets off a sequence of biochemical reactions and morphophysiological changes which may cause cell death in several tissues and organs. In order to test the hypothesis that Cd interferes in the metabolism of G. americana, a greenhouse experiment was conducted to measure eventual morphophysiological responses and cell death induced by Cd in this species. The plants were exposed to Cd concentrations ranging from 0 to 16 mg l(-1), in a nutritive solution. In TUNEL reaction, it was shown that Cd caused morphological changes in the cell nucleus of root tip and leaf tissues, which are typical for apoptosis. Cadmium induced anatomical changes in roots and leaves, such as the lignification of cell walls in root tissues and leaf main vein. In addition, the leaf mesophyll showed increase of the intercellular spaces. On the other hand, Cd caused reductions in the net photosynthetic rate, stomatal conductance and leaf transpiration, while the maximum potential quantum efficiency of PS2 (Fv/Fm) was unchanged. Cadmium accumulated in the root system in high concentrations, with low translocation for the shoot, and promoted an increase of Ca and Zn levels in the roots and a decrease of K level in the leaves. High concentrations of Cd promoted morphophysiological changes and caused cell death in roots and leaves tissues of G. americana.


Assuntos
Cádmio/farmacologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Rubiaceae/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Teoria Quântica , Rubiaceae/citologia , Rubiaceae/metabolismo
8.
An Acad Bras Cienc ; 83(2): 599-609, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21625799

RESUMO

The enzyme glucanase from Moniliophthora perniciosa was produced in liquid medium and purified from the culture supernatant. A multivariate statistical approach (Response Surface Methodology - RSM) was employed to evaluate the effect of variables, including inducer (yeast extract) and fermentation time, on secreted glucanase activities M. perniciosa detected in the culture medium. The crude enzyme present in the supernatant was purified in two steps: precipitation with ammonium sulfate (70%) and gel filtration chromatography on Sephacryl S-200. The best inducer and fermentation time for glucanase activities were 5.9 g L(-1) and 13 days, respectively. The results revealed three different isoforms (GLUI, GLUII and GLUIII) with purification factors of 4.33, 1.86 and 3.03, respectively. The partially purified enzymatic extract showed an optimum pH of 5.0 and an optimum temperature of 40°C. The enzymatic activity increased in the presence of KCl at all concentrations studied. The glucanase activity was highest in the presence of 0.2 M NaCl. The enzyme showed high thermal stability, losing only 10.20% of its specific activity after 40 minutes of incubation at 90°C. A purified enzyme with relatively good thermostability that is stable at low pH might be used in future industrial applications.


Assuntos
Agaricales/enzimologia , Glucana Endo-1,3-beta-D-Glucosidase/biossíntese , Cromatografia em Gel , Estabilidade Enzimática , Fermentação , Glucana Endo-1,3-beta-D-Glucosidase/química , Glucana Endo-1,3-beta-D-Glucosidase/isolamento & purificação , Especificidade por Substrato , Temperatura
9.
Planta ; 232(6): 1485-97, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20859638

RESUMO

Three cystatin open reading frames named TcCys1, TcCys2 and TcCys3 were identified in cDNA libraries from compatible interactions between Theobroma cacao (cacao) and Moniliophthora perniciosa. In addition, an ORF named TcCys4 was identified in the cDNA library of the incompatible interaction. The cDNAs encoded conceptual proteins with 209, 127, 124, and 205 amino acid residues, with a deduced molecular weight of 24.3, 14.1, 14.3 and 22.8 kDa, respectively. His-tagged recombinant proteins were purified from Escherichia coli expression, and showed inhibitory activities against M. perniciosa. The four recombinant cystatins exhibited K(i) values against papain in the range of 152-221 nM. Recombinant TcCYS3 and TcCYS4 immobilized in CNBr-Sepharose were efficient to capture M. perniciosa proteases from culture media. Polyclonal antibodies raised against the recombinant TcCYS4 detected that the endogenous protein was more abundant in young cacao tissues, when compared with mature tissues. A ~85 kDa cacao multicystatin induced by M. perniciosa inoculation, MpNEP (necrosis and ethylene-inducing protein) and M. perniciosa culture supernatant infiltration were detected by anti-TcCYS4 antibodies in cacao young tissues. A direct role of the cacao cystatins in the defense against this phytopathogen was proposed, as well as its involvement in the development of symptoms of programmed cell death.


Assuntos
Cacau/química , Morte Celular/efeitos dos fármacos , Cistatinas/farmacologia , Micélio/efeitos dos fármacos , Sequência de Bases , Cacau/genética , Primers do DNA , DNA Complementar , Micélio/crescimento & desenvolvimento , Fases de Leitura Aberta , Filogenia
10.
Mol Plant Microbe Interact ; 22(3): 352-61, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19245329

RESUMO

Plant responses against pathogens cause up- and downward shifts in gene expression. To identify differentially expressed genes in a plant-virus interaction, susceptible tomato plants were inoculated with the potyvirus Pepper yellow mosaic virus (PepYMV) and a subtractive library was constructed from inoculated leaves at 72 h after inoculation. Several genes were identified as upregulated, including genes involved in plant defense responses (e.g., pathogenesis-related protein 5), regulation of the cell cycle (e.g., cytokinin-repressed proteins), signal transduction (e.g., CAX-interacting protein 4, SNF1 kinase), transcriptional regulators (e.g., WRKY and SCARECROW transcription factors), stress response proteins (e.g., Hsp90, DNA-J, 20S proteasome alpha subunit B, translationally controlled tumor protein), ubiquitins (e.g., polyubiquitin, ubiquitin activating enzyme 2), among others. Downregulated genes were also identified, which likewise display identity with genes involved in several metabolic pathways. Differential expression of selected genes was validated by macroarray analysis and quantitative real-time polymerase chain reaction. The possible roles played by some of these genes in the viral infection cycle are discussed.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta , Potyvirus/fisiologia , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Perfilação da Expressão Gênica , Doenças das Plantas , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Mol Plant Microbe Interact ; 22(1): 39-51, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19061401

RESUMO

A pathogenesis-related (PR) protein from Theobroma cacao (TcPR-10) was identified from a cacao-Moniliophthora perniciosa interaction cDNA library. Nucleotide and amino acid sequences showed homology with other PR-10 proteins having P loop motif and Betv1 domain. Recombinant TcPR-10 showed in vitro and in vivo ribonuclease activity, and antifungal activity against the basidiomycete cacao pathogen M. perniciosa and the yeast Saccharomyces cerevisiae. Fluorescein isothiocyanate-labeled TcPR-10 was internalized by M. perniciosa hyphae and S. cerevisiae cells and inhibited growth of both fungi. Energy and temperature-dependent internalization of the TcPR-10 suggested an active importation into the fungal cells. Chronical exposure to TcPR-10 of 29 yeast mutants with single gene defects in DNA repair, general membrane transport, metal transport, and antioxidant defenses was tested. Two yeast mutants were hyperresistant compared with their respective isogenic wild type: ctr3Delta mutant, lacking the high-affinity plasma membrane copper transporter and mac1Delta, the copper-sensing transcription factor involved in regulation of high-affinity copper transport. Acute exposure of exponentially growing yeast cells revealed that TcPR-10 resistance is also enhanced in the Snq2 export permease-lacking mutant which has reduced intracellular presence of TcPR-10.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Cacau/metabolismo , Cobre/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Agaricales/efeitos dos fármacos , Agaricales/fisiologia , Sequência de Aminoácidos , Cacau/genética , Cacau/microbiologia , Eletroforese em Gel de Poliacrilamida , Interações Hospedeiro-Patógeno , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
12.
BMC Microbiol ; 9: 158, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19653910

RESUMO

BACKGROUND: The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. RESULTS: Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus. CONCLUSION: The identification of genes with increased expression in this phase of the life cycle of M. perniciosa opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both in vivo and in vitro of M. perniciosa basidiomata and the first description of genes expressed at this stage of the fungal life cycle.


Assuntos
Agaricales/crescimento & desenvolvimento , Agaricales/genética , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Cacau/microbiologia , Etiquetas de Sequências Expressas , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Genes Fúngicos , Genoma Fúngico , Proteínas Hemolisinas/genética , Dados de Sequência Molecular , Micélio/genética , Micélio/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Mol Plant Microbe Interact ; 21(7): 891-908, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18533830

RESUMO

Moniliophthora perniciosa is a hemibiotrophic fungus that causes witches' broom disease (WBD) in cacao. Marked dimorphism characterizes this fungus, showing a monokaryotic or biotrophic phase that causes disease symptoms and a later dikaryotic or saprotrophic phase. A combined strategy of DNA microarray, expressed sequence tag, and real-time reverse-transcriptase polymerase chain reaction analyses was employed to analyze differences between these two fungal stages in vitro. In all, 1,131 putative genes were hybridized with cDNA from different phases, resulting in 189 differentially expressed genes, and 4,595 reads were clusterized, producing 1,534 unigenes. The analysis of these genes, which represent approximately 21% of the total genes, indicates that the biotrophic-like phase undergoes carbon and nitrogen catabolite repression that correlates to the expression of phytopathogenicity genes. Moreover, downregulation of mitochondrial oxidative phosphorylation and the presence of a putative ngr1 of Saccharomyces cerevisiae could help explain its lower growth rate. In contrast, the saprotrophic mycelium expresses genes related to the metabolism of hexoses, ammonia, and oxidative phosphorylation, which could explain its faster growth. Antifungal toxins were upregulated and could prevent the colonization by competing fungi. This work significantly contributes to our understanding of the molecular mechanisms of WBD and, to our knowledge, is the first to analyze differential gene expression of the different phases of a hemibiotrophic fungus.


Assuntos
Agaricales/genética , Agaricales/patogenicidade , Cacau/microbiologia , Agaricales/crescimento & desenvolvimento , Agaricales/fisiologia , Sequência de Bases , Carbono/metabolismo , Primers do DNA/genética , Elementos de DNA Transponíveis/genética , DNA Fúngico/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
BMC Genomics ; 9: 512, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18973681

RESUMO

BACKGROUND: Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. RESULTS: Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species.Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories.A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database.To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection.A large collection of new genetic markers was provided by this ESTs collection. CONCLUSION: This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao. This EST collection represents a unique and important molecular resource for T. cacao study and improvement, facilitating the discovery of candidate genes for important T. cacao trait variation.


Assuntos
Cacau/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Genes de Plantas , Genoma de Planta , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , Análise de Sequência de DNA
15.
BMC Genomics ; 9: 548, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19019209

RESUMO

BACKGROUND: The basidiomycete fungus Moniliophthora perniciosa is the causal agent of Witches' Broom Disease (WBD) in cacao (Theobroma cacao). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao's meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle during later stages of infection. M. perniciosa, together with the related species M. roreri, are pathogens of aerial parts of the plant, an uncommon characteristic in the order Agaricales. A genome survey (1.9x coverage) of M. perniciosa was analyzed to evaluate the overall gene content of this phytopathogen. RESULTS: Genes encoding proteins involved in retrotransposition, reactive oxygen species (ROS) resistance, drug efflux transport and cell wall degradation were identified. The great number of genes encoding cytochrome P450 monooxygenases (1.15% of gene models) indicates that M. perniciosa has a great potential for detoxification, production of toxins and hormones; which may confer a high adaptive ability to the fungus. We have also discovered new genes encoding putative secreted polypeptides rich in cysteine, as well as genes related to methylotrophy and plant hormone biosynthesis (gibberellin and auxin). Analysis of gene families indicated that M. perniciosa have similar amounts of carboxylesterases and repertoires of plant cell wall degrading enzymes as other hemibiotrophic fungi. In addition, an approach for normalization of gene family data using incomplete genome data was developed and applied in M. perniciosa genome survey. CONCLUSION: This genome survey gives an overview of the M. perniciosa genome, and reveals that a significant portion is involved in stress adaptation and plant necrosis, two necessary characteristics for a hemibiotrophic fungus to fulfill its infection cycle. Our analysis provides new evidence revealing potential adaptive traits that may play major roles in the mechanisms of pathogenicity in the M. perniciosa/cacao pathosystem.


Assuntos
Agaricales/genética , Cacau/microbiologia , Genoma Fúngico , Doenças das Plantas/microbiologia , Agaricales/patogenicidade , Análise por Conglomerados , DNA Fúngico/genética , Etiquetas de Sequências Expressas , Genes Fúngicos , Genômica , Modelos Genéticos , Família Multigênica , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Biotechniques ; 35(3): 494-6, 498-500, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14513554

RESUMO

Witches' broom disease, caused by Crinipellis perniciosa, is one of the major fungal diseases causing severe losses to cacao tree (Theobroma cacao L.) plantations in South America. One of the challenges associated with the understanding of the cacao and Crinipellis interaction in genomic studies is the isolation of intact nucleic acids. In this report, we describe a new, successful, and reliable procedure for the isolation of RNA from tissues of cacao tree, both infected and uninfected by Crinipellis. This protocol overcomes the problems associated with the very high amount of polyphenols and polysaccharides present in cacao organs that are not easily removed by conventional extraction procedures. The protocol requires few reagents, uses ultracentrifugation and inexpensive consumables, and can be easily applied in any laboratory. This method produced high-quality RNA that was suitable for subsequent purposes, such as reverse transcription PCR and cDNA library construction. We also report the first evidence of RNA isolation from cacao organs infected by C. perniciosa such as meristems and fruits.


Assuntos
Basidiomycota/patogenicidade , Cacau/metabolismo , Cacau/microbiologia , Reação em Cadeia da Polimerase/métodos , RNA/isolamento & purificação , Cacau/genética , Frutas/genética , Frutas/metabolismo , Frutas/microbiologia , Caules de Planta/genética , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Ultracentrifugação/métodos
17.
Protein Pept Lett ; 11(6): 577-82, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15579128

RESUMO

Cassava storage roots result from swelling of adventitious roots by secondary growth. In the present study we aimed to gain insight into the molecular processes occurring during cassava storage root formation. We report a comparative gene expression study in adventitious and storage roots in order to identify genes possibly related to storage organ formation. Our results revealed five genes with higher expression levels in secondary xylem of storage roots than adventitious roots. Among them, the Mec1 gene coding for Pt2L4 glutamic acid-rich protein and a putative RING Zinc Finger and LEA protein genes were strongly induced in secondary xylem tissue.


Assuntos
Expressão Gênica/fisiologia , Genes de Plantas/fisiologia , Manihot/crescimento & desenvolvimento , Manihot/genética , Raízes de Plantas/crescimento & desenvolvimento , Northern Blotting , Perfilação da Expressão Gênica , Raízes de Plantas/genética
18.
PLoS One ; 7(9): e45620, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029140

RESUMO

Understanding how Nep-like proteins (NLPs) behave during the cell cycle and disease progression of plant pathogenic oomycetes, fungi and bacteria is crucial in light of compelling evidence that these proteins play a role in Witches` Broom Disease (WBD) of Theobroma cacao, one of the most important phytopathological problems to afflict the Southern Hemisphere. The crystal structure of MpNep2, a member of the NLP family and the causal agent of WBD, revealed the key elements for its activity. This protein has the ability to refold after heating and was believed to act as a monomer in solution, in contrast to the related homologs MpNep1 and NPP from the oomyceteous fungus Phytophthora parasitica. Here, we identify and characterize a metastable MpNep2 dimer upon over-expression in Escherichia coli using different biochemical and structural approaches. We found using ultra-fast liquid chromatography that the MpNep2 dimer can be dissociated by heating but not by dilution, oxidation or high ionic strength. Small-angle X-ray scattering revealed a possible tail-to-tail interaction between monomers, and nuclear magnetic resonance measurements identified perturbed residues involved in the putative interface of interaction. We also explored the ability of the MpNep2 monomer to refold after heating or chemical denaturation. We observed that MpNep2 has a low stability and cooperative fold that could be an explanation for its structure and activity recovery after stress. These results can provide new insights into the mechanism for MpNep2's action in dicot plants during the progression of WBD and may open new avenues for the involvement of NLP- oligomeric species in phytopathological disorders.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Soluções , Termodinâmica
19.
Mol Biosyst ; 8(5): 1507-19, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22373587

RESUMO

This study reports on expression analysis associated with molecular systems biology of cacao-Moniliophthora perniciosa interaction. Gene expression data were obtained for two cacao genotypes (TSH1188, resistant; Catongo, susceptible) challenged or not with the fungus M. perniciosa and collected at three time points through disease. Using expression analysis, we identified 154 and 227 genes that are differentially expressed in TSH1188 and Catongo, respectively. The expression of some of these genes was confirmed by RT-qPCR. Physical protein-protein interaction (PPPI) networks of Arabidopsis thaliana orthologous proteins corresponding to resistant and susceptible interactions were obtained followed by cluster and gene ontology analyses. The integrated analysis of gene expression and systems biology allowed designing a general scheme of major mechanisms associated with witches' broom disease resistance/susceptibility. In this sense, the TSH1188 cultivar shows strong production of ROS and elicitors at the beginning of the interaction with M. perniciosa followed by resistance signal propagation and ROS detoxification. On the other hand, the Catongo genotype displays defense mechanisms that include the synthesis of some defense molecules but without success in regards to elimination of the fungus. This phase is followed by the activation of protein metabolism which is achieved with the production of proteasome associated with autophagy as a precursor mechanism of PCD. This work also identifies candidate genes for further functional studies and for genetic mapping and marker assisted selection.


Assuntos
Cacau/genética , Cacau/microbiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Doenças das Plantas/imunologia , Biologia de Sistemas/métodos , Basidiomycota/fisiologia , Análise por Conglomerados , Resistência à Doença/imunologia , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
20.
Plant Physiol Biochem ; 49(8): 917-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21641227

RESUMO

In plant-pathogen interaction, the hydrogen peroxide (H2O2) may play a dual role: its accumulation inhibits the growth of biotrophic pathogens, while it could help the infection/colonization process of plant by necrotrophic pathogens. One of the possible pathways of H2O production involves oxalic acid (Oxa) degradation by apoplastic oxalate oxidase. Here, we analyzed the production of H2O2, the presence of calcium oxalate (CaOx) crystals and the content of Oxa and ascorbic acid (Asa)--the main precursor of Oxa in plants--in susceptible and resistant cacao (Theobroma cacao L.) infected by the hemibiotrophic fungus Moniliophthora perniciosa. We also quantified the transcript level of ascorbate peroxidase (Apx), germin-like oxalate oxidase (Glp) and dehydroascorbate reductase (Dhar) by RT-qPCR. We report that the CaOx crystal amount and the H2O2 levels in the two varieties present distinct temporal and genotype-dependent patterns. Susceptible variety accumulated more CaOx crystals than the resistant one, and the dissolution of these crystals occurred in the early infection steps and in the final stage of the disease in the resistant and the susceptible variety, respectively. High expression of the Glp and accumulation of Oxa were observed in the resistant variety. The content of Asa increased in the inoculated susceptible variety, but remained constant in the resistant one. The susceptible variety presented reduced Dhar expression. The role of H2O2 and its formation from Oxa via Apx and Glp in resistant and susceptible variety infected by M. perniciosa were discussed.


Assuntos
Agaricales/patogenicidade , Cacau/microbiologia , Peróxido de Hidrogênio/metabolismo , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Cacau/metabolismo , Oxalato de Cálcio/metabolismo , Predisposição Genética para Doença , Genótipo , Ácido Oxálico/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA