Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(5): 1514-1531, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35277714

RESUMO

Hemipterans (such as aphids, whiteflies, and leafhoppers) are some of the most devastating insect pests due to the numerous plant pathogens they transmit as vectors, which are primarily viral. Over the past decade, tremendous progress has been made in broadening our understanding of plant-virus-vector interactions, yet on the molecular level, viruses and vectors have typically been studied in isolation of each other until recently. From that work, it is clear that both hemipteran vectors and viruses use effectors to manipulate host physiology and successfully colonize a plant and that co-evolutionary dynamics have resulted in effective host immune responses, as well as diverse mechanisms of counterattack by both challengers. In this review, we focus on advances in effector-mediated plant-virus-vector interactions and the underlying mechanisms. We propose that molecular synergisms in vector-virus interactions occur in cases where both the virus and vector benefit from the interaction (mutualism). To support this view, we show that mutualisms are common in virus-vector interactions and that virus and vector effectors target conserved mechanisms of plant immunity, including plant transcription factors, and plant protein degradation pathways. Finally, we outline ways to identify true effector synergisms in the future and propose future research directions concerning the roles effectors play in plant-virus-vector interactions.


Assuntos
Afídeos , Vírus de Plantas , Animais , Interações Hospedeiro-Patógeno , Insetos Vetores/fisiologia , Doenças das Plantas , Imunidade Vegetal/genética , Vírus de Plantas/fisiologia , Plantas
2.
Mol Plant Microbe Interact ; 36(3): 189-197, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534062

RESUMO

Virus infection can increase drought tolerance of infected plants compared with noninfected plants; however, the mechanisms mediating virus-induced drought tolerance remain unclear. In this study, we demonstrate turnip mosaic virus (TuMV) infection increases Arabidopsis thaliana survival under drought compared with uninfected plants. To determine if specific TuMV proteins mediate drought tolerance, we cloned the coding sequence for each of the major viral proteins and generated transgenic A. thaliana that constitutively express each protein. Three TuMV proteins, 6K1, 6K2, and NIa-Pro, enhanced drought tolerance of A. thaliana when expressed constitutively in plants compared with controls. While in the control plant, transcripts related to abscisic acid (ABA) biosynthesis and ABA levels were induced under drought, there were no changes in ABA or related transcripts in plants expressing 6K2 under drought compared with well-watered conditions. Expression of 6K2 also conveyed drought tolerance in another host plant, Nicotiana benthamiana, when expressed using a virus overexpression construct. In contrast to ABA, 6K2 expression enhanced salicylic acid (SA) accumulation in both Arabidopsis and N. benthamiana. These results suggest 6K2-induced drought tolerance is mediated through increased SA levels and SA-dependent induction of plant secondary metabolites, osmolytes, and antioxidants that convey drought tolerance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Arabidopsis/metabolismo , Secas , Potyvirus/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Ácido Abscísico/metabolismo
3.
J Gen Virol ; 104(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37053090

RESUMO

Biotechnologies that use plant viruses as plant enhancement tools have shown great potential to flexibly engineer crop traits, but field applications of these technologies are still limited by efficient dissemination methods. Potyviruses can be rapidly inoculated into plants by aphid vectors due to the presence of the potyviral helper component proteinase (HC-Pro), which binds to the DAG motif of the coat protein (CP) of the virion. Previously it was determined that a naturally occurring DAG motif in the non-aphid-transmissible potexvirus, potato aucuba mosaic virus (PAMV), is functional when a potyviral HC-Pro is provided to aphids in plants. The DAG motif of PAMV was successfully transferred to the CP of another non-aphid-transmissible potexvirus, potato virus X, to convey aphid transmission capabilities in the presence of HC-Pro. Here, we demonstrate that DAG-containing segments of the CP from two different potyviruses (sugarcane mosaic virus and turnip mosaic virus), and from the previously used potexvirus, PAMV, can make the potexvirus, foxtail mosaic virus (FoMV), aphid-transmissible when fused with the FoMV CP. We show that DAG-containing FoMVs are transmissible by aphids that have prior access to HC-Pro through potyvirus-infected plants or ectopic expression of HC-Pro. The transmission efficiency of the DAG-containing FoMVs varied from less than 10 % to over 70 % depending on the length and composition of the surrounding amino acid sequences of the DAG-containing segment, as well as due to the recipient plant species. Finally, we show that the engineered aphid-transmissible FoMV is still functional as a plant enhancement resource, as endogenous host target genes were silenced in FoMV-infected plants after aphid transmission. These results suggest that aphid transmission could be engineered into non-aphid-transmissible plant enhancement viral resources to facilitate their field applications.


Assuntos
Afídeos , Vírus de Plantas , Potexvirus , Potyvirus , Animais , Potexvirus/metabolismo , Potyvirus/genética , Cisteína Endopeptidases/química , Plantas , Doenças das Plantas
4.
Plant Physiol ; 190(4): 2557-2578, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36135793

RESUMO

Water availability influences all aspects of plant growth and development; however, most studies of plant responses to drought have focused on vegetative organs, notably roots and leaves. Far less is known about the molecular bases of drought acclimation responses in fruits, which are complex organs with distinct tissue types. To obtain a more comprehensive picture of the molecular mechanisms governing fruit development under drought, we profiled the transcriptomes of a spectrum of fruit tissues from tomato (Solanum lycopersicum), spanning early growth through ripening and collected from plants grown under varying intensities of water stress. In addition, we compared transcriptional changes in fruit with those in leaves to highlight different and conserved transcriptome signatures in vegetative and reproductive organs. We observed extensive and diverse genetic reprogramming in different fruit tissues and leaves, each associated with a unique response to drought acclimation. These included major transcriptional shifts in the placenta of growing fruit and in the seeds of ripe fruit related to cell growth and epigenetic regulation, respectively. Changes in metabolic and hormonal pathways, such as those related to starch, carotenoids, jasmonic acid, and ethylene metabolism, were associated with distinct fruit tissues and developmental stages. Gene coexpression network analysis provided further insights into the tissue-specific regulation of distinct responses to water stress. Our data highlight the spatiotemporal specificity of drought responses in tomato fruit and indicate known and unrevealed molecular regulatory mechanisms involved in drought acclimation, during both vegetative and reproductive stages of development.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/metabolismo , Frutas/metabolismo , Transcriptoma/genética , Regulação da Expressão Gênica de Plantas , Desidratação/genética , Desidratação/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigênese Genética
5.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34586580

RESUMO

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Assuntos
Hemípteros , Nicotiana , Aciltransferases/metabolismo , Animais , Dessecação , Herbivoria , Insetos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Água
6.
Mol Ecol ; 30(19): 4939-4948, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347913

RESUMO

Plants are often attacked by multiple antagonists and traits of the attacking organisms and their order of arrival onto hosts may affect plant defences. However, few studies have assessed how multiple antagonists, and varying attack order, affect plant defence or nutrition. To address this, we assessed defensive and nutritional responses of Pisum sativum plants after attack by a vector herbivore (Acrythosiphon pisum), a nonvector herbivore (Sitona lineatus), and a pathogen (Pea enation mosaic virus, PEMV). We show viruliferous A. pisum induced several antipathogen plant defence signals, but these defences were inhibited by S. lineatus feeding on peas infected with PEMV. In contrast, S. lineatus feeding induced antiherbivore defence signals, and these plant defences were enhanced by PEMV. Sitona lineatus also increased abundance of plant amino acids, but only when they attacked after viruliferous A. pisum. Our results suggest that diverse communities of biotic antagonists alter defence and nutritional traits of plants through complex pathways that depend on the identity of attackers and their order of arrival onto hosts. Moreover, we show interactions among a group of biotic stressors can vary along a spectrum from antagonism to enhancement/synergism based on the identity and order of attackers, and these interactions are mediated by a multitude of phytohormone pathways.


Assuntos
Pisum sativum , Gorgulhos , Animais , Herbivoria , Reguladores de Crescimento de Plantas
7.
J Exp Bot ; 72(7): 2696-2709, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33462583

RESUMO

The increased susceptibility of ripe fruit to fungal pathogens poses a substantial threat to crop production and marketability. Here, we coupled transcriptomic analyses with mutant studies to uncover critical processes associated with defense and susceptibility in tomato (Solanum lycopersicum) fruit. Using unripe and ripe fruit inoculated with three fungal pathogens, we identified common pathogen responses reliant on chitinases, WRKY transcription factors, and reactive oxygen species detoxification. We established that the magnitude and diversity of defense responses do not significantly impact the interaction outcome, as susceptible ripe fruit mounted a strong immune response to pathogen infection. Then, to distinguish features of ripening that may be responsible for susceptibility, we utilized non-ripening tomato mutants that displayed different susceptibility patterns to fungal infection. Based on transcriptional and hormone profiling, susceptible tomato genotypes had losses in the maintenance of cellular redox homeostasis, while jasmonic acid accumulation and signaling coincided with defense activation in resistant fruit. We identified and validated a susceptibility factor, pectate lyase (PL). CRISPR-based knockouts of PL, but not polygalacturonase (PG2a), reduced susceptibility of ripe fruit by >50%. This study suggests that targeting specific genes that promote susceptibility is a viable strategy to improve the resistance of tomato fruit against fungal disease.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Solanum lycopersicum , Botrytis , Frutas/imunologia , Frutas/microbiologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Oecologia ; 196(4): 1005-1015, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34264386

RESUMO

Herbivores assess predation risk in their environment by identifying visual, chemical, and tactile predator cues. Detection of predator cues can induce risk-avoidance behaviors in herbivores that affect feeding, dispersal, and host selection in ways that minimize mortality and reproductive costs. For herbivores that transmit plant pathogens, including many aphids, changes in herbivore behavior in response to predator cues may also affect pathogen spread. However, few studies have assessed how aphid behavioral responses to different types of predator cues affect pathogen transmission. Here, we conducted greenhouse experiments to assess whether responses of pea aphids (Acyrthosiphon pisum) to predation risk and alarm pheromone (E-ß-Farnesene), an aphid alarm signal released in response to predation risk, affected transmission of Pea enation mosaic virus (PEMV). We exposed A. pisum individuals to risk cues, and quantified viral titer in aphids and pea (Pisum sativum) host plants across several time periods. We also assessed how A. pisum responses to risk cues affected aphid nutrition, reproduction, and host selection. We show that exposure to predator cues and alarm pheromone significantly reduced PEMV acquisition and inoculation. Although vectors avoided hosts with predator cues, predator cues did not alter vector reproduction or reduce nutrient acquisition. Overall, these results suggest that non-consumptive effects of predators may indirectly decrease the spread of plant pathogens by altering vector behavior in ways that reduce vector competence and pathogen transmission efficiency.


Assuntos
Afídeos , Vírus de Plantas , Animais , Sinais (Psicologia) , Humanos , Feromônios , Comportamento Predatório
9.
Plant Cell Environ ; 43(2): 387-399, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758809

RESUMO

Potato leafroll virus (PLRV), genus Polerovirus, family Luteoviridae, is a major pathogen of potato worldwide. PLRV is transmitted among host plants by aphids in a circulative-nonpropagative manner. Previous studies have demonstrated that PLRV infection increases aphid fecundity on, and attraction to, infected plants as compared to controls. However, the molecular mechanisms mediating this relationship are still poorly understood. In this study, we measured the impact of PLRV infection on plant-aphid interactions and plant chemistry in two hosts: Solanum tuberosum and Nicotiana benthamiana. Our study demonstrates that PLRV infection attenuates the induction of aphid-induced jasmonic acid and ethylene in S. tuberosum and N. benthamiana. Using transient expression experiments, insect bioassays and chemical analysis, we show that expression of three PLRV proteins (P0, P1, and P7) mediate changes in plant-aphid interactions and inhibition of aphid-induced jasmonic acid and ethylene in N. benthamiana. This study enhances our understanding of the plant-vector-pathogen interface by elucidating new mechanisms by which plant viruses transmitted in a circulative manner can manipulate plant hosts.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Insetos Vetores/virologia , Luteoviridae/fisiologia , Vírus de Plantas/fisiologia , Proteínas Virais/metabolismo , Aminoácidos/metabolismo , Animais , Afídeos/virologia , Ciclopentanos/metabolismo , Etilenos , Fertilidade , Regulação Viral da Expressão Gênica , Luteoviridae/genética , Oxilipinas/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Vírus de Plantas/genética , Ácido Salicílico/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética
10.
Appl Environ Microbiol ; 85(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31175190

RESUMO

Agricultural management practices affect bulk soil microbial communities and the functions they carry out, but it remains unclear how these effects extend to the rhizosphere in different agroecosystem contexts. Given close linkages between rhizosphere processes and plant nutrition and productivity, understanding how management practices impact this critical zone is of great importance to optimize plant-soil interactions for agricultural sustainability. A comparison of six paired conventional-organic processing tomato farms was conducted to investigate relationships between management, soil physicochemical parameters, and rhizosphere microbial community composition and functions. Organically managed fields were higher in soil total N and NO3-N, total and labile C, plant Ca, S, and Cu, and other essential nutrients, while soil pH was higher in conventionally managed fields. Differential abundance, indicator species, and random forest analyses of rhizosphere communities revealed compositional differences between organic and conventional systems and identified management-specific microbial taxa. Phylogeny-based trait prediction showed that these differences translated into more abundant pathogenesis-related gene functions in conventional systems. Structural equation modeling revealed a greater effect of soil biological communities than physicochemical parameters on plant outcomes. These results highlight the importance of rhizosphere-specific studies, as plant selection likely interacts with management in regulating microbial communities and functions that impact agricultural productivity.IMPORTANCE Agriculture relies, in part, on close linkages between plants and the microorganisms that live in association with plant roots. These rhizosphere bacteria and fungi are distinct from microbial communities found in the rest of the soil and are even more important to plant nutrient uptake and health. Evidence from field studies shows that agricultural management practices such as fertilization and tillage shape microbial communities in bulk soil, but little is known about how these practices affect the rhizosphere. We investigated how agricultural management affects plant-soil-microbe interactions by comparing soil physical and chemical properties, plant nutrients, and rhizosphere microbial communities from paired fields under organic and conventional management. Our results show that human management effects extend even to microorganisms living in close association with plant roots and highlight the importance of these bacteria and fungi to crop nutrition and productivity.


Assuntos
Microbiologia do Solo , Solanum lycopersicum/crescimento & desenvolvimento , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Solanum lycopersicum/microbiologia , Microbiota , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Solo/química
11.
Plant Physiol ; 178(4): 1720-1732, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30348816

RESUMO

Plants have sophisticated mechanisms for sensing neighbor shade. To maximize their ability to compete for light, plants respond to shade through enhanced elongation and physiological changes. The shade avoidance response affects many different organs and growth stages, yet the signaling pathways underlying this response have mostly been studied in seedlings. We assayed transcriptome changes in response to shade across a 2-d time course in the wild type and 12 Arabidopsis (Arabidopsis thaliana) mutants. The resulting temporal map of transcriptional responses to shade defines early and late responses in adult plants, enabling us to determine connections between key signaling genes and downstream responses. We found a pervasive and unexpectedly strong connection between shade avoidance and genes related to salicylic acid, suggesting salicylic acid signaling to be an important shade avoidance growth regulator. We tested this connection and found that several mutants disrupting salicylic acid levels or signaling were defective in shade avoidance. The effect of these mutations on shade avoidance was specific to petiole elongation; neither hypocotyl nor flowering time responses were altered, thereby defining important stage-specific differences in the downstream shade avoidance signaling pathway. Shade treatment did not change salicylic acid levels, indicating that the mediation of shade avoidance by salicylic acid is not dependent on the modulation of salicylic acid levels. These results demonstrate that salicylic acid pathway genes also are key components of petiole shade avoidance.


Assuntos
Arabidopsis/fisiologia , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutação , Oxilipinas/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Plantas Geneticamente Modificadas
12.
Oecologia ; 190(1): 139-148, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065807

RESUMO

Plant pathogens can influence host characteristics such as volatile emissions, nutrient composition or plant color, modulating vector and non-vector insect dynamics in the ecosystem. While previous research has focused on insect attraction and dispersal to infected plants, little is known about mechanisms mediating these interactions. Here, we investigate the role of ethylene in green peach aphid (Myzus persicae) attraction to potyvirus-infected plants. In our experiments, we utilized two different potyviruses, Potato virus Y (PVY) and Turnip mosaic virus, in lab and field experiments. Consistent with previous studies, we show that greater numbers of aphids settle on potyvirus-infected plants in the lab and greater numbers of aphids are found in PVY-infected potato (Solanum tuberosum) fields compared to controls. In laboratory experiments, inhibition of ethylene signaling in plants either chemically or genetically prevented aphids from preferentially settling on potyvirus-infected plants. Virus spread was reduced in lab arenas by over 80% when ethylene signaling was inhibited chemically. Despite this, ethylene inhibition had no significant impact on virus spread in field mesocosms. Our results indicate that induction of ethylene signaling by potyviruses mediates aphid attraction to infected plants and virus spread; however, additional factors may contribute to plant-vector dynamics in complex communities. Specific components of ethylene signaling may be important targets for future management of vector-borne viruses and research on mechanisms mediating plant-vector-virus interactions.


Assuntos
Afídeos , Potyvirus , Solanum tuberosum , Animais , Ecossistema , Etilenos , Doenças das Plantas
13.
Ecology ; 99(10): 2139-2144, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29999522

RESUMO

Vector-borne viruses alter many physical and chemical traits of their plant hosts, indirectly affecting the fitness and behavior of vectors in ways that promote virus transmission. However, it is unclear whether viruses induce plant-mediated shifts in the behavior and fitness of non-vector herbivores, or if non-vectors affect the dynamics of vector-borne viruses. Here we evaluated reciprocal interactions between Pea enation mosaic virus (PEMV), a pathogen transmitted by the aphid Acrythosiphon pisum, and a non-vector weevil, Sitona lineatus. In the field, PEMV-infected plants experienced more defoliation from S. lineatus than uninfected plants; behavioral assays similarly showed S. lineatus adults preferred to feed on infected plants. In turn, infectious A. pisum preferred plants damaged by S. lineatus, and S. lineatus herbivory led to increased PEMV titer. These interactions may be mediated by plant phytohormone levels, as S. lineatus induced jasmonic acid, while PEMV induced salicylic acid. Levels of abscisic acid were not affected by attack from either PEMV or S. lineatus alone, but plants challenged by both had elevated levels of this phytohormone. As plant viruses and their vectors often exist in diverse communities, our study highlights the importance of non-vector species in influencing plant pathogens and their vectors through host-mediated effects.


Assuntos
Afídeos , Vírus , Animais , Herbivoria , Insetos Vetores , Pisum sativum , Doenças das Plantas
14.
J Gen Virol ; 97(5): 1261-1271, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26822322

RESUMO

A virus with a large genome was identified in the transcriptome of the potato aphid (Macrosiphum euphorbiae) and was named Macrosiphum euphorbiae virus 1 (MeV-1). The MeV-1 genome is 22 780 nt in size, including 3' and 5' non-coding regions, with a single large ORF encoding a putative polyprotein of 7333 aa. The C-terminal region of the predicted MeV-1 polyprotein contained sequences with similarities to helicase, methyltransferase and RNA-dependent RNA polymerase (RdRp) motifs, while the N-terminal region lacked any motifs including structural proteins. Phylogenetic analysis of the helicase placed MeV-1 close to pestiviruses, while the RdRp region placed it close to pestiviruses and flaviviruses, suggesting MeV-1 has a positive-polarity ssRNA genome and is a member of the family Flaviviridae. Since the MeV-1 genome is predicted to contain a methyltransferase, a gene present typically in flaviviruses but not pestiviruses, MeV-1 is likely a member of the genus Flavivirus. MeV-1 was present in nymphal and adult stages of the aphid, aphid saliva and plant tissues fed upon by aphids. However, the virus was unable to multiply and spread in tomato plants. In addition, dsRNA, the replication intermediate of RNA viruses, was isolated from virus-infected M. euphorbiae and not from tomato plants infested with the aphid. Furthermore, nymphs laid without exposure to infected plants harboured the virus, indicating that MeV-1 is an aphid-infecting virus likely transmitted transovarially. The virus was present in M. euphorbiae populations from Europe but not from North America and was absent in all other aphid species tested.


Assuntos
Afídeos/virologia , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Animais , Larva , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Replicação Viral/fisiologia
15.
Plant Physiol ; 169(1): 209-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26091820

RESUMO

Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations.


Assuntos
Afídeos/fisiologia , Arabidopsis/imunologia , Brassica napus/imunologia , Insetos Vetores/fisiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Potyvirus/fisiologia , Animais , Afídeos/virologia , Arabidopsis/genética , Brassica napus/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Interações Hospedeiro-Parasita , Insetos Vetores/virologia , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais
16.
Plant J ; 77(4): 653-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372679

RESUMO

Many plant viruses depend on aphids and other phloem-feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus-infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over-expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a-protease domain (NIa-Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa-Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa-Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant-aphid interactions to promote its own transmission.


Assuntos
Afídeos/fisiologia , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Potyvirus/fisiologia , Proteínas Virais/metabolismo , Animais , Afídeos/crescimento & desenvolvimento , Afídeos/virologia , Arabidopsis/genética , Arabidopsis/parasitologia , Arabidopsis/virologia , Brassica napus/parasitologia , Brassica napus/virologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Floema/virologia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Potyvirus/genética , Reprodução , Nicotiana/genética , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/genética
18.
Plant Cell ; 23(9): 3303-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21917546

RESUMO

Since research on plant interactions with herbivores and pathogens is often constrained by the analysis of already known compounds, there is a need to identify new defense-related plant metabolites. The uncommon nonprotein amino acid N(δ)-acetylornithine was discovered in a targeted search for Arabidopsis thaliana metabolites that are strongly induced by the phytohormone methyl jasmonate (MeJA). Stable isotope labeling experiments show that, after MeJA elicitation, Arg, Pro, and Glu are converted to Orn, which is acetylated by NATA1 to produce N(δ)-acetylornithine. MeJA-induced N(δ)-acetylornithine accumulation occurs in all tested Arabidopsis accessions, other Arabidopsis species, Capsella rubella, and Boechera stricta, but not in less closely related Brassicaceae. Both insect feeding and Pseudomonas syringae infection increase NATA1 expression and N(δ)-acetylornithine accumulation. NATA1 transient expression in Nicotiana tabacum and the addition of N(δ)-acetylornithine to an artificial diet both decrease Myzus persicae (green peach aphid) reproduction, suggesting a direct toxic or deterrent effect. However, since broad metabolic changes that are induced by MeJA in wild-type Arabidopsis are attenuated in a nata1 mutant strain, there may also be indirect effects on herbivores and pathogens. In the case of P. syringae, growth on a nata1 mutant is reduced compared with wild-type Arabidopsis, but growth in vitro is unaffected by N(δ)-acetylornithine addition.


Assuntos
Acetatos/farmacologia , Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Ornitina/análogos & derivados , Oxilipinas/farmacologia , Acetilação , Animais , Afídeos/fisiologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Metaboloma , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Ornitina/biossíntese , Doenças das Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pseudomonas syringae/patogenicidade
19.
J Chem Ecol ; 40(7): 836-47, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25052911

RESUMO

Plants recognize biotic challengers and respond with the appropriate defense by utilizing phytohormone signaling and crosstalk. Despite this, microbes and insects have evolved mechanisms that compromise the plant surveillance system and specific defenses, thus ensuring successful colonization. In nature, plants do not experience insect herbivores and microbes in isolation, but in combination. Over time, relationships have developed between insects and microbes, varying on a continuum from no-relationship to obligate relationships that are required for both organisms to survive. While many reviews have examined plant-insect and plant-microbe interactions and the mechanisms of plant defense, few have considered the interface where microbes and insects may overlap, and synergies may develop. In this review, we critically evaluate the requirements for insect-associated microbes to develop synergistic relationships with their hosts, and we mechanistically discuss how some of these insect-associated microbes can target or modify host plant defenses. Finally, by using bioinformatics and the recent literature, we review evidence for synergies in insect-microbe relationships at the interface of plant-insect defenses. Insect-associated microbes can influence host-plant detection and/or signaling through phytohormone synthesis, conserved microbial patterns, and effectors, however, microbes associated with insects must be maintained in the environment and located in opportunistic positions.


Assuntos
Insetos/microbiologia , Microbiota , Plantas/metabolismo , Animais , Herbivoria , Interações Hospedeiro-Patógeno , Insetos/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/microbiologia , Plantas/parasitologia , Transdução de Sinais
20.
Plant Physiol ; 158(2): 854-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22209873

RESUMO

Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.


Assuntos
Comportamento Alimentar , Insetos/fisiologia , Plantas/parasitologia , Acetatos/metabolismo , Animais , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plantas/genética , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA