Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(7): 5986-5998, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293812

RESUMO

"Tin-oxo cage" organometallic compounds are considered as photoresists for extreme ultraviolet (EUV) photolithography. To gain insight into their electronic structure and reactivity to ionizing radiation, we trapped bare gas-phase n-butyltin-oxo cage dications [(BuSn)12O14(OH)6]2+ in an ion trap and investigated their fragmentation upon soft X-ray photoabsorption by means of mass spectrometry. In complementary experiments, the tin-oxo cages with hydroxide and trifluoroacetate counter-anions were cast in thin films and studied using X-ray transmission spectroscopy. Quantum-chemical calculations were used to interpret the observed spectra. At the carbon K-edge, a distinct pre-edge absorption band can be attributed to transitions in which electrons are promoted from C1s orbitals to the lowest unoccupied molecular orbitals, which are delocalized orbitals with strong antibonding (Sn-C σ*) character. At higher energies, the most prominent resonant transitions involve C-C and C-H σ* valence states and Rydberg (3s and 3p) states. In the solid state, the onset of continuum ionization is shifted by ∼5 eV to lower energy with respect to the gas phase, due to the electrostatic effect of the counterions. The O K-edge also shows a pre-edge absorption, but it is devoid of any specific features, because there are many transitions from the different O1s orbitals to a large number of vacant orbitals. In the gas phase, formation of the parent [(BuSn)12O14(OH)6]3+ radical ion is not observed at the C K-edge nor at the O K-edge, because the loss of a butyl group from this species is very efficient. We do observe a number of triply charged photofragment ions, some of which have lost up to 5 butyl groups. Structures of these species are proposed based on quantum-chemical calculations, and pathways of formation are discussed. Our results provide insight into the electronic structure of alkyltin-oxo cages, which is a prerequisite for understanding their response to EUV photons and their performance as EUV photoresists.

2.
Phys Chem Chem Phys ; 25(47): 32728, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38010296

RESUMO

Correction for 'UV and VUV-induced fragmentation of tin-oxo cage ions' by Jarich Haitjema et al., Phys. Chem. Chem. Phys., 2021, 23, 20909-20918, https://doi.org/10.1039/D1CP03148A.

3.
Phys Chem Chem Phys ; 23(31): 16646-16657, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34323899

RESUMO

The electron-induced chemistry of a resist material for extreme ultraviolet lithography (EUVL) consisting of Zn oxoclusters with methacrylate (MA) and trifluoroacetate (TFA) ligands (Zn(MA)(TFA)) has been studied. Electron energies of 80 eV and 20 eV mimic the effect of photoelectrons released by the absorption of EUV photons and low-energy secondary electrons (LESEs) produced by those photoelectrons. The chemical conversion of the resist is studied by mass spectrometry to monitor the volatile species that desorb during electron irradiation, combined with reflection absorption infrared spectra (RAIRS) measured before and after irradiation. The observed reactions are closely related to those initiated upon EUV absorption. Also, the conversion of the Zn(MA)(TFA) resist layer that is required in EUVL is achieved by a similar energy input upon electron irradiation. The dominant component of the desorbing gas is CO2, but CO detection also suggests Zn oxide formation during electron irradiation. In contrast, species deriving from the ligand side chains predominantly remain within the resist layer. RAIRS gives direct evidence that, during electron irradiation, C[double bond, length as m-dash]C bonds of the MA ligands are more rapidly consumed than the carboxylate groups. This supports that chain reactions occur and contribute to the solubility switch in the resist in EUVL. Remarkably, 20 eV electrons still evolve roughly 50% of the amount of the gas that is observed at 80 eV for the same electron dose. The present results thus provide complementary and new insight to the EUV-induced chemistry in the Zn(MA)(TFA) resist and point towards the important contribution of low-energy electrons therein.

4.
Phys Chem Chem Phys ; 23(37): 20909-20918, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533559

RESUMO

Photoresist materials are being optimized for the recently introduced Extreme Ultraviolet (EUV) photolithographic technology. Organometallic compounds are potential candidates for replacing the ubiquitous polymer-based chemically amplified resists. Tin (Sn) has a particularly large absorption cross section for EUV light (13.5 nm, 92 eV), which could lead to a lower required EUV dose for achieving the desired solubility change (improved sensitivity). However, the fundamental interaction between organometallic materials and higher energy photons is poorly understood. In this work, we exposed n-butyltin-oxo cage dications (M2+) in the gas phase to photons in the energy range 4-35 eV to explore their fundamental photoreactivity. Photoproducts were detected using mass spectrometry. Homolytic cleavage of tin-carbon bonds was observed for all photon energies above the onset of electronic absorption at ∼5 eV (∼250 nm), leading to photoproducts which have lost one or more of the attached butyl groups (Bu). Above 12 eV (<103 nm), dissociative photoionization occurred for the dication (M2+), competing with the neutral loss channels. The photoionization threshold is lowered by approximately 2 eV when one counterion (triflate, OTf- or tosylate, OTs-) is attached to the tin-oxo cage (MOTf+ and MOTs+). This threshold is expected to be even lower if each tin-oxo cage is attached to two counterions, as is the case in a solid film of tin-oxo cages. Addition of counterions also affected the fragmentation pathways; photoexcitation of (MX)+ (X = counterion, OTf or OTs) always led to formation of (MX-2Bu)+ rather than (MX-Bu)+. MOTs+ was much more reactive than MOTf+ in terms of reaction products per absorbed photon. A possible explanation for this is proposed, which involves the counterion reacting with the initially formed tin-based radical.

5.
Chemistry ; 22(2): 746-52, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26617393

RESUMO

The ability to control the interplay of materials with low-energy photons is important as visible light offers several appealing features compared to ultraviolet radiation (less damaging, more selective, predominant in the solar spectrum, possibility to increase the penetration depth). Two different metal-organic frameworks (MOFs) were synthesized from the same linker bearing all-visible ortho-fluoroazobenzene photoswitches as pendant groups. The MOFs exhibit different architectures that strongly influence the ability of the azobenzenes to isomerize inside the voids. The framework built with Al-based nodes has congested 1D channels that preclude efficient isomerization. As a result, local light-heat conversion can be used to alter the CO2 adsorption capacity of the material on exposure to green light. The second framework, built with Zr nodes, provides enough room for the photoswitches to isomerize, which leads to a unique bistable photochromic MOF that readily responds to blue and green light. The superiority of green over UV irradiation was additionally demonstrated by reflectance spectroscopy and analysis of digested samples. This material offers promising perspectives for liquid-phase applications such as light-controlled catalysis and adsorptive separation.

6.
ACS Mater Au ; 2(3): 343-355, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36855383

RESUMO

The absorption of extreme ultraviolet (EUV) radiation by a photoresist strongly depends on its atomic composition. Consequently, elements with a high EUV absorption cross section can assist in meeting the demand for higher photon absorbance by the photoresist to improve the sensitivity and reduce the photon shot noise induced roughness. In this work, we enhanced the EUV absorption of the methacrylic acid ligands of Zn oxoclusters by introducing fluorine atoms. We evaluated the lithography performance of this fluorine-rich material as a negative tone EUV photoresist along with extensive spectroscopic and microscopic studies, providing deep insights into the underlying mechanism. UV-vis spectroscopy studies demonstrate that the presence of fluorine in the oxocluster enhances its stability in the thin films to the ambient atmosphere. However, the EUV photoresist sensitivity (D 50) of the fluorine-rich oxocluster is decreased compared to its previously studied methacrylic acid analogue. Scanning transmission X-ray microscopy and in situ X-ray photoelectron spectroscopy in combination with FTIR and UV-vis spectroscopy were used to gain insights into the chemical changes in the material responsible for the solubility switch. The results support decarboxylation of the ligands and subsequent radical-induced polymerization reactions in the thin film upon EUV irradiation. The rupture of carbon-fluorine bonds via dissociative electron attachment offers a parallel way of generating radicals. The mechanistic insights obtained here will be applicable to other hybrid materials and potentially pave the way for the development of EUV materials with better performance.

7.
ACS Appl Mater Interfaces ; 13(43): 51790-51798, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34669380

RESUMO

Extreme ultraviolet (EUV) lithography uses 13.5 nm light to reach the sub-20 nm resolution. However, the process of pattern formation induced by this high-energy light is not well-understood. In this work, we provide an inorganic EUV photoresist with fluorescence properties by introducing a carbazole derivative as a ligand, and we study its effect on the patterning process. Using the fluorescence properties, changes in the emission of the material after EUV exposure could be tracked by means of spectroscopy and microscopy. The resist sensitivity was substantially reduced by the incorporation of the carbazole benzoate ligands, which is attributed to hole trapping and steric hindrance. After EUV irradiation of the resist films, infrared, UV-visible absorption, and fluorescence spectroscopies showed that the carbazole units were still mostly intact, although their fluorescence intensity was lowered. Our work shows that fluorescent labeling can provide relevant mechanistic insights in the patterning process of resists, potentially with a molecular resolution.

8.
Nanoscale ; 12(20): 11306-11316, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32421115

RESUMO

Colloidal quantum dots have found many applications and patterning them on micro- and nanoscale would open a new dimension of tunability for the creation of smaller scale (flexible) electronics or nanophotonic structures. Here we present a simple, general, one-step top-down patterning technique for colloidal quantum dots by means of direct optical or electron beam lithography. We find that both photons and electrons can induce a solubility switch of both PbS and CdSe quantum dot films. The solubility switch can be ascribed to cross-linking of the organic ligands, which we observe from exposure with deep-UV photons (5.5 eV) to extreme-UV photons (91.9 eV), and low-energy (3-70 eV) as well as highly energetic electrons (50 keV). The required doses for patterning are relatively low and feature sizes can be as small as tens of nanometers. The luminescence properties as well as carrier lifetimes remain similar after patterning.

9.
ACS Appl Mater Interfaces ; 12(8): 9881-9889, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32019303

RESUMO

Extreme ultraviolet (EUV) lithography (13.5 nm) is the newest technology that allows high-throughput fabrication of electronic circuitry in the sub-20 nm scale. It is commonly assumed that low-energy electrons (LEEs) generated in the resist materials by EUV photons are mostly responsible for the solubility switch that leads to nanopattern formation. Yet, reliable quantitative information on this electron-induced process is scarce. In this work, we combine LEE microscopy (LEEM), electron energy loss spectroscopy (EELS), and atomic force microscopy (AFM) to study changes induced by electrons in the 0-40 eV range in thin films of a state-of-the-art molecular organometallic EUV resist known as tin-oxo cage. LEEM-EELS uniquely allows to correct for surface charging and thus to accurately determine the electron landing energy. AFM postexposure analyses revealed that irradiation of the resist with LEEs leads to the densification of the resist layer because of carbon loss. Remarkably, electrons with energies as low as 1.2 eV can induce chemical reactions in the Sn-based resist. Electrons with higher energies are expected to cause electronic excitation or ionization, opening up more pathways to enhanced conversion. However, we do not observe a substantial increase of chemical conversion (densification) with the electron energy increase in the 2-40 eV range. Based on the dose-dependent thickness profiles, a simplified reaction model is proposed where the resist undergoes sequential chemical reactions, first yielding a sparsely cross-linked network and then a more densely cross-linked network. This model allows us to estimate a maximum reaction volume on the initial material of 0.15 nm3 per incident electron in the energy range studied, which means that about 10 LEEs per molecule on average are needed to turn the material insoluble and thus render a pattern. Our observations are consistent with the observed EUV sensitivity of tin-oxo cages.

11.
ChemSusChem ; 9(4): 388-95, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26871265

RESUMO

Recently, MIL-125(Ti) and NH2 -MIL-125(Ti), two titanium-based metal-organic frameworks, have attracted significant research attention in the field of photocatalysis for solar fuel generation. This work reveals that the differences between these structures are not only based on their light absorption range but also on the decay profile and topography of their excited states. In contrast to MIL-125(Ti), NH2 -MIL-125(Ti) shows markedly longer lifetimes of the charge-separated state, which improves photoconversion by the suppression of competing decay mechanisms. We used spectroelectrochemistry and ultrafast spectroscopy to demonstrate that upon photoexcitation in NH2 -MIL-125(Ti) the electron is located in the Ti-oxo clusters and the hole resides on the aminoterephthalate unit, specifically on the amino group. The results highlight the role of the amino group in NH2 -MIL-125(Ti), the electron donation of which extends the lifetime of the photoexcited state substantially.


Assuntos
Compostos Orgânicos/química , Titânio/química , Catálise , Fotoquímica
13.
Chem Commun (Camb) ; 46(28): 5130-2, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20532413

RESUMO

Stable radical adducts of the TTM series bearing carbazolyl or indolyl fragments show bipolar transport properties with mobility values among the highest detected in glassy small molecules. Bipolarity is attributed to the radical character, while the heterocyclic ring confers the adducts the glassy morphological states and the non-dispersive regimes for charge transport.

14.
J Org Chem ; 73(10): 3759-67, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18419161

RESUMO

This paper describes the synthesis of the novel bis[4-(N-carbazolyl)-2,6-dichlorophenyl](2,4,6-trichlorophenyl)methyl radical (2*) and tris[4-(N-carbazolyl)-2,6-dichlorophenyl]methyl radical (3*). A Friedel-Crafts reaction on [4-(N-carbazolyl)-2,6-dichlorophenyl)bis(2,4,6-trichlorophenyl]methyl radical (1*), 2*, and 3* leads to the introduction of acyl chains in the 3- and 6-positions of the carbazolyl moiety without impairment of the radical character of the molecule to give radicals 5*, 6*, and 7*. All of these novel radical adducts are thermally stable, 5* and 6* being amorphous solids by differential scanning calorimetry. Electron paramagnetic resonance spectra of them show a multiplet at low temperature due to the electron-coupling with six aromatic hydrogens. They show electrochemical amphotericity being reduced and oxidized to their corresponding stable anionic and cationic species, respectively. These radical adducts have luminescent properties covering the red spectral band of the emission with high intensities.


Assuntos
Carbazóis/síntese química , Clorobenzenos/síntese química , Radicais Livres/síntese química , Magnetismo , Varredura Diferencial de Calorimetria , Carbazóis/química , Clorobenzenos/química , Eletroquímica , Radicais Livres/química , Estrutura Molecular , Estereoisomerismo , Temperatura
15.
J Org Chem ; 72(20): 7523-32, 2007 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17824646

RESUMO

Synthesis and characterization of new carbazolyl derivatives with a pendant stable radical of the TTM (tris-2,4,6-trichlorophenylmethyl radical) series are reported. The EPR spectra, electrochemical properties, absorption spectra, and luminescent properties of these radical adducts have been studied. All of them show electrochemical amphotericity being reduced and oxidized to their corresponding stable charged species. The luminescence properties of them cover the red spectral band of the emission. The luminescence of the electron-rich carbazole adducts shows the donor-acceptor nature of the excited state. On the other hand, the EPR parameters of these radical adducts show an imperceptible variation with the substituents in the carbazole.


Assuntos
Carbazóis/química , Clorobenzenos/química , Compostos de Terfenil/química , Carbazóis/síntese química , Clorobenzenos/síntese química , Estabilidade de Medicamentos , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Compostos de Terfenil/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA