Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671720

RESUMO

Direct interface circuits (DICs) avoid the need for signal conditioning circuits and analog-to-digital converters (ADCs) to obtain digital measurements of resistive sensors using only a few passive elements. However, such simple hardware can lead to quantization errors when measuring small resistance values as well as high measurement times and uncertainties for high resistances. Different solutions to some of these problems have been presented in the literature over recent years, although the increased uncertainty in measurements at higher resistance values is a problem that has remained unaddressed. This article presents an economical hardware solution that only requires an extra capacitor to reduce this problem. The circuit is implemented with a field-programmable gate array (FPGA) as a programmable digital device. The new proposal significantly reduces the uncertainty in the time measurements. As a result, the high resistance errors decreased by up to 90%. The circuit requires three capacitor discharge cycles, as is needed in a classic DIC. Therefore, the time to estimate resistance increases slightly, between 2.7% and 4.6%.

2.
Sensors (Basel) ; 18(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061541

RESUMO

Tactile sensors can be used to build human-machine interfaces, for instance in isometric joysticks or handlebars. When used as input sensor device for control, questions arise related to the contact with the human, which involve ergonomic aspects. This paper focuses on the example application of driving a powered wheelchair as attendant. Since other proposals use force and torque sensors as control input variables, this paper explores the relationship between these variables and others obtained from the tactile sensor. For this purpose, a handlebar is instrumented with tactile sensors and a 6-axis force torque sensor. Several experiments are carried out with this handlebar mounted on a wheelchair and also fixed to a table. It is seen that it is possible to obtain variables well correlated with those provided by force and torque sensors. However, it is necessary to contemplate the influence of issues such as the gripping force of the human hand on the sensor or the different kinds of grasps due to different physical constitutions of humans and to the inherent random nature of the grasp. Moreover, it is seen that a first step is necessary where the contact with the hands has to stabilize, and its characteristics and settle time are obtained.


Assuntos
Sistemas Homem-Máquina , Tato , Cadeiras de Rodas , Adulto , Desenho de Equipamento , Humanos , Torque , Adulto Jovem
3.
Sensors (Basel) ; 17(11)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29104229

RESUMO

The typical layout in a piezoresistive tactile sensor arranges individual sensors to form an array with M rows and N columns. While this layout reduces the wiring involved, it does not allow the values of the sensor resistors to be measured individually due to the appearance of crosstalk caused by the nonidealities of the array reading circuits. In this paper, two reading methods that minimize errors resulting from this phenomenon are assessed by designing an electronic system for array reading, and the results are compared to those obtained using the traditional method, obviating the nonidealities of the reading circuit. The different models were compared by testing the system with an array of discrete resistors. The system was later connected to a tactile sensor with 8 × 7 taxels.

4.
Sensors (Basel) ; 16(2): 149, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26821024

RESUMO

One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges.

5.
Sensors (Basel) ; 16(2): 181, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26840321

RESUMO

Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor.

6.
Sensors (Basel) ; 15(10): 25433-62, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26445044

RESUMO

This paper shows realizations of a piezoresistive tactile sensor with a low cost screen-printing technology. A few samples were fabricated for different materials used as insulator between the conductive layers and as top layer or cover. Both can be used to tune the sensitivity of the sensor. However, a large influence is also observed of the roughness at the contact interface on the sensitivity and linearity of the output, as well as on mismatching between the outputs from different taxels. The roughness at the contact interface is behind the transduction principle of the sensor, but it also limits its performance if the wavelength of the roughness is comparable or even longer than the size of the contacts. The paper shows experimental results that confirm this relationship and discusses its consequences in sensor response related to the materials chosen for the insulator and the cover. Moreover, simulations with FEA tools and with simple models are used to support the discussions and conclusions obtained from the experimental data. This provides insights into the sensor behaviour that are shared by other sensors based on the same principle.


Assuntos
Técnicas Biossensoriais/instrumentação , Fenômenos Mecânicos , Tato , Técnicas Biossensoriais/métodos , Módulo de Elasticidade , Elastômeros/química , Eletrodos , Eletrônica , Desenho de Equipamento , Teste de Materiais , Maleabilidade , Impressão/instrumentação
7.
Sensors (Basel) ; 15(12): 31762-80, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26694403

RESUMO

Direct sensor-digital device interfaces measure time dependent variables of simple circuits to implement analog-to-digital conversion. Field Programmable Gate Arrays (FPGAs) are devices whose hardware can be reconfigured to work in parallel. They usually do not have analog-to-digital converters, but have many general purpose I/O pins. Therefore, direct sensor-FPGA connection is a good choice in complex systems with many sensors because several capture modules can be implemented to perform parallel analog data acquisition. The possibility to work in parallel and with high frequency clock signals improves the bandwidth compared to sequential devices such as conventional microcontrollers. The price to pay is usually the resolution of measurements. This paper proposes capture modules implemented in an FPGA which are able to perform smart acquisition that filter noise and achieve high precision. A calibration technique is also proposed to improve accuracy. Resolutions of 12 effective number of bits are obtained for the reading of resistors in the range of an example piezoresistive tactile sensor.


Assuntos
Computadores , Eletrônica/instrumentação , Modelos Teóricos , Desenho de Equipamento
8.
Sensors (Basel) ; 15(10): 26170-97, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26501279

RESUMO

This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes.

9.
Sensors (Basel) ; 15(8): 20409-35, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26295393

RESUMO

Tactile sensors suffer from many types of interference and errors like crosstalk, non-linearity, drift or hysteresis, therefore calibration should be carried out to compensate for these deviations. However, this procedure is difficult in sensors mounted on artificial hands for robots or prosthetics for instance, where the sensor usually bends to cover a curved surface. Moreover, the calibration procedure should be repeated often because the correction parameters are easily altered by time and surrounding conditions. Furthermore, this intensive and complex calibration could be less determinant, or at least simpler. This is because manipulation algorithms do not commonly use the whole data set from the tactile image, but only a few parameters such as the moments of the tactile image. These parameters could be changed less by common errors and interferences, or at least their variations could be in the order of those caused by accepted limitations, like reduced spatial resolution. This paper shows results from experiments to support this idea. The experiments are carried out with a high performance commercial sensor as well as with a low-cost error-prone sensor built with a common procedure in robotics.


Assuntos
Robótica/métodos , Tato/fisiologia , Eletrônica , Processamento de Imagem Assistida por Computador
10.
Sensors (Basel) ; 11(3): 3249-66, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163797

RESUMO

Tactile sensors are basically arrays of force sensors that are intended to emulate the skin in applications such as assistive robotics. Local electronics are usually implemented to reduce errors and interference caused by long wires. Realizations based on standard microcontrollers, Programmable Systems on Chip (PSoCs) and Field Programmable Gate Arrays (FPGAs) have been proposed by the authors for the case of piezoresistive tactile sensors. The solution employing FPGAs is especially relevant since their performance is closer to that of Application Specific Integrated Circuits (ASICs) than that of the other devices. This paper presents an implementation of such an idea for a specific sensor. For the purpose of comparison, the circuitry based on the other devices is also made for the same sensor. This paper discusses the implementation issues, provides details regarding the design of the hardware based on the three devices and compares them.


Assuntos
Computadores , Eletricidade , Eletrônica/instrumentação , Tato
11.
Sensors (Basel) ; 11(5): 5489-507, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163910

RESUMO

This paper reports the design of a tactile sensor patch to cover large areas of robots and machines that interact with human beings. Many devices have been proposed to meet such a demand. These realizations are mostly custom-built or developed in the lab. The sensor of this paper is implemented with commercial force sensors. This has the benefit of a more foreseeable response of the sensor if its behavior is understood as the aggregation of readings from all the individual force sensors in the array. A few reported large area tactile sensors are also based on commercial sensors. However, the one in this paper is the first of this kind based on the use of polymeric commercial force sensing resistors (FSR) as unit elements of the array or tactels, which results in a robust sensor. The paper discusses design issues related to some necessary modifications of the force sensor, its assembly in an array, and the signal conditioning. The patch has 16 × 9 force sensors mounted on a flexible printed circuit board with a spatial resolution of 18.5 mm. The force range of a tactel is 6 N and its sensitivity is 0.6 V/N. The array is read at a rate of 78 frames per second. Finally, two simple application examples are also carried out with the sensor mounted on the forearm of a rescue robot that communicates with the sensor through a CAN bus.


Assuntos
Técnicas Biossensoriais/instrumentação , Robótica/instrumentação , Tato , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA