Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Magn Reson Med ; 92(3): 1115-1127, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38730562

RESUMO

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.


Assuntos
Encéfalo , Crowdsourcing , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Masculino , Feminino , Adulto , Algoritmos
2.
Radiology ; 307(2): e221425, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36749211

RESUMO

Background Cortical multiple sclerosis lesions are clinically relevant but inconspicuous at conventional clinical MRI. Double inversion recovery (DIR) and phase-sensitive inversion recovery (PSIR) are more sensitive but often unavailable. In the past 2 years, artificial intelligence (AI) was used to generate DIR and PSIR from standard clinical sequences (eg, T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery sequences), but multicenter validation is crucial for further implementation. Purpose To evaluate cortical and juxtacortical multiple sclerosis lesion detection for diagnostic and disease monitoring purposes on AI-generated DIR and PSIR images compared with MRI-acquired DIR and PSIR images in a multicenter setting. Materials and Methods Generative adversarial networks were used to generate AI-based DIR (n = 50) and PSIR (n = 43) images. The number of detected lesions between AI-generated images and MRI-acquired (reference) images was compared by randomized blinded scoring by seven readers (all with >10 years of experience in lesion assessment). Reliability was expressed as the intraclass correlation coefficient (ICC). Differences in lesion subtype were determined using Wilcoxon signed-rank tests. Results MRI scans of 202 patients with multiple sclerosis (mean age, 46 years ± 11 [SD]; 127 women) were retrospectively collected from seven centers (February 2020 to January 2021). In total, 1154 lesions were detected on AI-generated DIR images versus 855 on MRI-acquired DIR images (mean difference per reader, 35.0% ± 22.8; P < .001). On AI-generated PSIR images, 803 lesions were detected versus 814 on MRI-acquired PSIR images (98.9% ± 19.4; P = .87). Reliability was good for both DIR (ICC, 0.81) and PSIR (ICC, 0.75) across centers. Regionally, more juxtacortical lesions were detected on AI-generated DIR images than on MRI-acquired DIR images (495 [42.9%] vs 338 [39.5%]; P < .001). On AI-generated PSIR images, fewer juxtacortical lesions were detected than on MRI-acquired PSIR images (232 [28.9%] vs 282 [34.6%]; P = .02). Conclusion Artificial intelligence-generated double inversion-recovery and phase-sensitive inversion-recovery images performed well compared with their MRI-acquired counterparts and can be considered reliable in a multicenter setting, with good between-reader and between-center interpretative agreement. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Zivadinov and Dwyer in this issue.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Inteligência Artificial , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos
3.
J Magn Reson Imaging ; 55(1): 154-163, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189804

RESUMO

BACKGROUND: The mechanisms driving primary progressive and relapsing-remitting multiple sclerosis (PPMS/RRMS) phenotypes are unknown. Magnetic resonance imaging (MRI) studies support the involvement of gray matter (GM) in the degeneration, highlighting its damage as an early feature of both phenotypes. However, the role of GM microstructure is unclear, calling for new methods for its decryption. PURPOSE: To investigate the morphometric and microstructural GM differences between PPMS and RRMS to characterize GM tissue degeneration using MRI. STUDY TYPE: Prospective cross-sectional study. SUBJECTS: Forty-five PPMS (26 females) and 45 RRMS (32 females) patients. FIELD STRENGTH/SEQUENCE: 3T scanner. Three-dimensional (3D) fast field echo T1-weighted (T1-w), 3D turbo spin echo (TSE) T2-w, 3D TSE fluid-attenuated inversion recovery, and spin echo-echo planar imaging diffusion MRI (dMRI). ASSESSMENT: T1-w and dMRI data were employed for providing information about morphometric and microstructural features, respectively. For dMRI, both diffusion tensor imaging and 3D simple harmonics oscillator based reconstruction and estimation models were used for feature extraction from a predefined set of regions. A support vector machine (SVM) was used to perform patients' classification relying on all these measures. STATISTICAL TESTS: Differences between MS phenotypes were investigated using the analysis of covariance and statistical tests (P < 0.05 was considered statistically significant). RESULTS: All the dMRI indices showed significant microstructural alterations between the considered MS phenotypes, for example, the mode and the median of the return to the plane probability in the hippocampus. Conversely, thalamic volume was the only morphometric feature significantly different between the two MS groups. Ten of the 12 features retained by the selection process as discriminative across the two MS groups regarded the hippocampus. The SVM classifier using these selected features reached an accuracy of 70% and a precision of 69%. DATA CONCLUSION: We provided evidence in support of the ability of dMRI to discriminate between PPMS and RRMS, as well as highlight the central role of the hippocampus. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Estudos Transversais , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Fenótipo , Estudos Prospectivos
4.
Ann Neurol ; 88(3): 562-573, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32418239

RESUMO

OBJECTIVE: Intrathecal inflammation correlates with the grey matter damage since the early stages of multiple sclerosis (MS), but whether the cerebrospinal fluid (CSF) profile can help to identify patients at risk of disease activity is still unclear. METHODS: We evaluated the association between CSF levels of 18 cytokines, previously found to be associated to grey matter damage, and the disease activity, among 99 patients with relapsing-remitting MS, who underwent blinded clinical and 3 T magnetic resonance imaging (MRI) evaluations for 4 years. Groups with evidence of disease activity (EDA) or no evidence of disease activity (NEDA; occurrence of relapses, new white matter lesions, and Expanded Disability Status Scale [EDSS] change) were identified. Cortical lesions and the annualized cortical thinning were also evaluated. RESULTS: Forty-one patients experienced EDA and, compared to the NEDA group, had at diagnosis higher CSF levels of CXCL13, CXCL12, IFNγ, TNF, sCD163, LIGHT, and APRIL (p < 0.001). In the multivariate analysis, CXCL13 (hazard ratio [HR] = 1.35; p = 0.0002), LIGHT (HR = 1.22; p = 0.005) and APRIL (HR = 1.78; p = 0.0001) were the CSF molecules more strongly associated with the risk of EDA. The model, including CSF variables, predicted more accurately the occurrence of disease activity than the model with only clinical/MRI parameters (C-index at 4 years = 71% vs 44%). Finally, higher CSF levels of CXCL13 (ß = 4.7*10-4 ; p < 0.001), TNF (ß = 3.1*10-3 ; p = 0.004), LIGHT (ß = 2.6*10-4 ; p = 0.003), sCD163 (ß = 4.3*10-3 ; p = 0.009), and TWEAK (ß = 3.4*10-3 ; p = 0.024) were associated with more severe cortical thinning. INTERPRETATION: A specific CSF profile, mainly characterized by elevated levels of B-cell related cytokines, distinguishes patients at high risk of disease activity and severe cortical damage. The CSF analysis may allow stratifications of patients at diagnosis for optimizing therapeutic approaches. ANN NEUROL 2020;88:562-573.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Córtex Cerebral/patologia , Citocinas/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/patologia , Adolescente , Adulto , Progressão da Doença , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Ann Neurol ; 83(4): 739-755, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29518260

RESUMO

OBJECTIVE: Gray matter (GM) damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis (MS), but can these changes be identified in the patient early in the disease course? METHODS: To identify possible biomarkers linking meningeal inflammation, GM damage, and disease severity, gene and protein expression were analyzed in meninges and cerebrospinal fluid (CSF) from 27 postmortem secondary progressive MS and 14 control cases. Combined cytokine/chemokine CSF profiling and 3T magnetic resonance imaging (MRI) were performed at diagnosis in 2 independent cohorts of MS patients (35 and 38 subjects) and in 26 non-MS patients. RESULTS: Increased expression of proinflammatory cytokines (IFNγ, TNF, IL2, and IL22) and molecules related to sustained B-cell activity and lymphoid-neogenesis (CXCL13, CXCL10, LTα, IL6, and IL10) was detected in the meninges and CSF of postmortem MS cases with high levels of meningeal inflammation and GM demyelination. Similar proinflammatory patterns, including increased levels of CXCL13, TNF, IFNγ, CXCL12, IL6, IL8, and IL10, together with high levels of BAFF, APRIL, LIGHT, TWEAK, sTNFR1, sCD163, MMP2, and pentraxin III, were detected in the CSF of MS patients with higher levels of GM damage at diagnosis. INTERPRETATION: A common pattern of intrathecal (meninges and CSF) inflammatory profile strongly correlates with increased cortical pathology, both at the time of diagnosis and at death. These results suggest a role for detailed CSF analysis combined with MRI as a prognostic marker for more aggressive MS. Ann Neurol 2018 Ann Neurol 2018;83:739-755.


Assuntos
Córtex Cerebral/patologia , Citocinas/líquido cefalorraquidiano , Substância Cinzenta/patologia , Meninges/metabolismo , Esclerose Múltipla/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Córtex Cerebral/diagnóstico por imagem , Estudos de Coortes , Progressão da Doença , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Meninges/diagnóstico por imagem , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico por imagem , Curva ROC
7.
J Cogn Neurosci ; 29(2): 337-351, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27626222

RESUMO

A consolidated practice in cognitive neuroscience is to explore the properties of human visual working memory through the analysis of electromagnetic signals using cued change detection tasks. Under these conditions, EEG/MEG activity increments in the posterior parietal cortex scaling with the number of memoranda are often reported in the hemisphere contralateral to the objects' position in the memory array. This highly replicable finding clashes with several reported failures to observe compatible hemodynamic activity modulations using fMRI or fNIRS in comparable tasks. Here, we reconcile this apparent discrepancy by acquiring fMRI data on healthy participants and employing a cluster analysis to group voxels in the posterior parietal cortex based on their functional response. The analysis identified two distinct subpopulations of voxels in the intraparietal sulcus (IPS) showing a consistent functional response among participants. One subpopulation, located in the superior IPS, showed a bilateral response to the number of objects coded in visual working memory. A different subpopulation, located in the inferior IPS, showed an increased unilateral response when the objects were displayed contralaterally. The results suggest that a cluster of neurons in the inferior IPS is a candidate source of electromagnetic contralateral responses to working memory load in cued change detection tasks.


Assuntos
Memória de Curto Prazo/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Mapeamento Encefálico/métodos , Circulação Cerebrovascular , Análise por Conglomerados , Sinais (Psicologia) , Feminino , Lateralidade Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Oxigênio/sangue
8.
Magn Reson Med ; 78(5): 1801-1811, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28070897

RESUMO

PURPOSE: To present the stable spline (SS) deconvolution method for the quantification of the cerebral blood flow (CBF) from dynamic susceptibility contrast MRI. METHODS: The SS method was compared with both the block-circulant singular value decomposition (oSVD) and nonlinear stochastic regularization (NSR) methods. oSVD is one of the most popular deconvolution methods in dynamic susceptibility contrast MRI (DSC-MRI). NSR is an alternative approach that we proposed previously. The three methods were compared using simulated data and two clinical data sets. RESULTS: The SS method correctly reconstructed the dispersed residue function and its peak in presence of dispersion, regardless of the delay. In absence of dispersion, SS performs similarly to oSVD and does not correctly reconstruct the residue function and its peak. SS and NSR better differentiate healthy and pathologic CBF values compared with oSVD in all simulated conditions. Using acquired data, SS and NSR provide more clinically plausible and physiological estimates of the residue function and CBF maps compared with oSVD. CONCLUSION: The SS method overcomes some of the limitations of oSVD, such as unphysiological estimates of the residue function and NSR, the latter of which is too computationally expensive to be applied to large data sets. Thus, the SS method is a valuable alternative for CBF quantification using DSC-MRI data. Magn Reson Med 78:1801-1811, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Algoritmos , Velocidade do Fluxo Sanguíneo , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador , Esclerose Múltipla
9.
J Neurol Neurosurg Psychiatry ; 88(12): 1073-1078, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844068

RESUMO

INTRODUCTION: Among disease-modifying treatments for multiple sclerosis, natalizumab (NTZ) is highly effective, well tolerated and generally safe. Major concerns regard the risk of developing progressive multifocal leukoencephalopathy (PML), and the occurrence of rebounds or disease activity after its discontinuation. The aim of this study was to explore the efficacy of dimethyl fumarate (DMF) in preventing disease reactivation after NTZ discontinuation. METHODS: Thirty-nine patients with relapsing remitting multiple sclerosis, at high risk of PML, were switched from NTZ to DMF and underwent neurological and 3T MRI monitoring for 2 years. Clinical and MRI data regarding the 2-year period preceding NTZ treatment, the 2 years of NTZ treatment and the 2 years of DMF were collected. RESULTS: During the DMF phase, among the 39 patients, one or more relapses occurred in five patients (12.8%), increased disability progression in 4 (10.3%) and MRI activity in 8 (20.5%). Post-NTZ rebound effect was observed only in one patient. Overall, only two dropouts (one rebound activity and one gastrointestinal side effect) were registered and almost 80% of the patients have still no evidence of disease activity at the end of DMF treatment. The multiple linear regression model revealed that the number of relapses and MRI parameters before DMF treatment were good predictors of disease activity during treatment with DMF. DISCUSSION: DMF appeared generally safe and no carryover PML among investigated cases was observed. Although DMF did not eliminate the possibility of disease reactivation, it seems anyway a promising drug for those patients who shall discontinue NTZ. The clinical and radiological activity preceding the DMF treatment might be used as a prognostic marker of therapy response.


Assuntos
Fumarato de Dimetilo/uso terapêutico , Imunossupressores/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/efeitos adversos , Natalizumab/uso terapêutico , Adulto , Fumarato de Dimetilo/efeitos adversos , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imunossupressores/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/prevenção & controle , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva , Adulto Jovem
10.
Q J Nucl Med Mol Imaging ; 61(4): 345-359, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28750494

RESUMO

INTRODUCTION: In the last 20 years growing attention has been devoted to multimodal imaging. The recent literature is rich of clinical and research studies that have been performed using different imaging modalities on both separate and integrated positron emission tomography (PET) and magnetic resonance (MR) scanners. However, today, hybrid PET/MR systems measure signals related to brain structure, metabolism, neurochemistry, perfusion, and neuronal activity simultaneously, i.e. in the same physiological conditions. A frequently raised question at meeting and symposia is: "Do we really need a hybrid PET/MR system? Are there any advantages over acquiring sequential and separate PET and MR scans?" The present paper is an attempt to answer these questions specifically in relation to PET combined with functional magnetic resonance imaging (fMRI) and arterial spin labeling. EVIDENCE ACQUISITION: We searched (last update: June 2017) the databases PubMed, PMC, Google Scholar and Medline. We also included additional studies if they were cited in the selected articles. No language restriction was applied to the search, but the reviewed articles were all in English. Among all the retrieved articles, we selected only those performed using a hybrid PET/MR system. We found a total of 17 papers that were selected and discussed in three main groups according to the main radiopharmaceutical used: 18F-fluorodeoxyglucose (18F-FDG) (N.=8), 15O-water (15O-H2O) (N.=3) and neuroreceptors (N.=6). EVIDENCE SYNTHESIS: Concerning studies using 18F-FDG, simultaneous PET/fMRI revealed that global aspects of functional organization (e.g. graph properties of functional connections) are partially associated with energy consumption. There are remarkable spatial and functional similarities across modalities, but also discrepant findings. More work is needed on this point. There are only a handful of papers comparing blood flow measurements with PET 15O-H2O and MR arterial spin label (ASL) measures, and they show significant regional CBF differences between these two modalities. However, at least in one study the correlation at the level of gray, white matter, and whole brain is rather good (r=0.94, 0.8, 0.81 respectively). Finally, receptor studies show that simultaneous PET/fMRI could be a useful tool to characterize functional connectivity along with dynamic neuroreceptor adaptation in several physiological (e.g. working memory) or pathological (e.g. pain) conditions, with or without drug administrations. CONCLUSIONS: The simultaneous acquisition of PET (using a number of radiotracers) and functional MRI (using a number of sequences) offers exciting opportunities that we are just beginning to explore. The results thus far are promising in the evaluation of cerebral metabolism/flow, neuroreceptor adaptation, and network's energetic demand.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Circulação Sanguínea , Fluordesoxiglucose F18/química , Humanos , Compostos Radiofarmacêuticos/química , Marcadores de Spin
11.
Magn Reson Med ; 74(6): 1758-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25427245

RESUMO

PURPOSE: QUASAR arterial spin labeling (ASL) permits the application of deconvolution approaches for the absolute quantification of cerebral perfusion. Currently, oscillation index regularized singular value decomposition (oSVD) combined with edge-detection (ED) is the most commonly used method. Its major drawbacks are nonphysiological oscillations in the impulse response function and underestimation of perfusion. The aim of this work is to introduce a novel method to overcome these limitations. METHODS: A system identification method, stable spline (SS), was extended to address ASL peculiarities such as the delay in arrival of the arterial blood in the tissue. The proposed framework was compared with oSVD + ED in both simulated and real data. SS was used to investigate the validity of using a voxel-wise tissue T1 value instead of using a single global value (of blood T1 ). RESULTS: SS outperformed oSVD + ED in 79.9% of simulations. When applied to real data, SS exhibited a physiologically realistic range for perfusion and a higher mean value with respect to oSVD + ED (55.5 ± 9.5 SS, 34.9 ± 5.2 oSVD + ED mL/100 g/min). CONCLUSION: SS can represent an alternative to oSVD + ED for the quantification of QUASAR ASL data. Analysis of the retrieved impulse response function revealed that using a voxel wise tissue T1 might be suboptimal.


Assuntos
Encéfalo/fisiologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Encéfalo/anatomia & histologia , Artérias Cerebrais/anatomia & histologia , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Marcadores de Spin
12.
Eur Radiol Exp ; 8(1): 33, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409562

RESUMO

We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Reprodutibilidade dos Testes , Plexo Corióideo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Razão Sinal-Ruído
13.
J Neurol ; 271(5): 2149-2158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38289534

RESUMO

INTRODUCTION: Ocrelizumab (OCR) and Fingolimod (FGL) are two high-efficacy treatments in multiple sclerosis which, besides their strong anti-inflammatory activity, may limit neurodegeneration. AIM: To compare the effect of OCR and FGL on clinical and MRI endpoints. METHODS: 95 relapsing-remitting patients (57 OCR, 38 FGL) clinically followed for 36 months underwent a 3-Tesla MRI at baseline and after 24 months. The annualized relapse rate, EDSS, new cortical/white matter lesions and regional cortical and deep grey matter volume loss were evaluated. RESULTS: OCR reduced the relapse rate from 0.48 to 0.04, FGL from 0.32 to 0.05 (both p < 0.001). Compared to FGL, OCR-group experienced fewer new white matter lesions (12% vs 32%, p = 0.005), no differences in new cortical lesions, lower deep grey matter volume loss (- 0.12% vs - 0.66%; p = 0.002, Cohen's d = 0.54), lower global cortical thickness change (- 0.45% vs - 0.70%; p = 0.036; d = 0.42) and reduced cortical thinning/volume loss in several regions of interests, including those of parietal gyrus (d-range = 0.65-0.71), frontal gyrus (d-range = 0.47-0.60), cingulate (d-range = 0.41-0.72), insula (d = 0.36), cerebellum (cortex d = 0.72, white matter d = 0.44), putamen (d = 0.35) and thalamus (d = 0.31). The effect on some regional thickness changes was confirmed in patients without focal lesions. CONCLUSIONS: When compared with FGL, patients receiving OCR showed greater suppression of focal MRI lesions accumulation and lower cortical and deep grey matter volume loss.


Assuntos
Anticorpos Monoclonais Humanizados , Cloridrato de Fingolimode , Substância Cinzenta , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente , Humanos , Feminino , Masculino , Adulto , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Pessoa de Meia-Idade , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/administração & dosagem , Seguimentos
14.
JAMA Neurol ; 81(2): 143-153, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38079177

RESUMO

Importance: Multiple sclerosis (MS) misdiagnosis remains an important issue in clinical practice. Objective: To quantify the performance of cortical lesions (CLs) and central vein sign (CVS) in distinguishing MS from other conditions showing brain lesions on magnetic resonance imaging (MRI). Design, Setting, and Participants: This was a retrospective, cross-sectional multicenter study, with clinical and MRI data acquired between January 2010 and May 2020. Centralized MRI analysis was conducted between July 2020 and December 2022 by 2 raters blinded to participants' diagnosis. Participants were recruited from 14 European centers and from a multicenter pan-European cohort. Eligible participants had a diagnosis of MS, clinically isolated syndrome (CIS), or non-MS conditions; availability of a brain 3-T MRI scan with at least 1 sequence suitable for CL and CVS assessment; presence of T2-hyperintense white matter lesions (WMLs). A total of 1051 individuals were included with either MS/CIS (n = 599; 386 [64.4%] female; mean [SD] age, 41.5 [12.3] years) or non-MS conditions (including other neuroinflammatory disorders, cerebrovascular disease, migraine, and incidental WMLs in healthy control individuals; n = 452; 302 [66.8%] female; mean [SD] age, 49.2 [14.5] years). Five individuals were excluded due to missing clinical or demographic information (n = 3) or unclear diagnosis (n = 2). Exposures: MS/CIS vs non-MS conditions. Main Outcomes and Measures: Area under the receiver operating characteristic curves (AUCs) were used to explore the diagnostic performance of CLs and the CVS in isolation and in combination; sensitivity, specificity, and accuracy were calculated for various cutoffs. The diagnostic importance of CLs and CVS compared to conventional MRI features (ie, presence of infratentorial, periventricular, and juxtacortical WMLs) was ranked with a random forest model. Results: The presence of CLs and the previously proposed 40% CVS rule had a sensitivity, specificity, and accuracy for MS of 59.0% (95% CI, 55.1-62.8), 93.6% (95% CI, 91.4-95.6), and 73.9% (95% CI, 71.6-76.3) and 78.7% (95% CI, 75.5-82.0), 86.0% (95% CI, 82.1-89.5), and 81.5% (95% CI, 78.9-83.7), respectively. The diagnostic performance of the CVS (AUC, 0.89 [95% CI, 0.86-0.91]) was superior to that of CLs (AUC, 0.77 [95% CI, 0.75-0.80]; P < .001), and was increased when combining the 2 imaging markers (AUC, 0.92 [95% CI, 0.90-0.94]; P = .04); in the random forest model, both CVS and CLs outperformed the presence of infratentorial, periventricular, and juxtacortical WMLs in supporting MS differential diagnosis. Conclusions and Relevance: The findings in this study suggest that CVS and CLs may be valuable tools to increase the accuracy of MS diagnosis.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Esclerose Múltipla/diagnóstico , Estudos Retrospectivos , Estudos Transversais , Encéfalo/patologia , Veias/patologia , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética/métodos
15.
Neuroimage Clin ; 40: 103518, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778195

RESUMO

INTRODUCTION: Neuropsychological studies infer brain-behavior relationships from focal lesions like stroke and tumors. However, these pathologies impair brain function through different mechanisms even when they occur at the same brain's location. The aim of this study was to compare the profile of cognitive impairment in patients with brain tumors vs. stroke and examine the correlation with lesion location in each pathology. METHODS: Patients with first time stroke (n = 77) or newly diagnosed brain tumors (n = 76) were assessed with a neuropsychological battery. Their lesions were mapped with MRI scans. Test scores were analyzed using principal component analysis (PCA) to measure their correlation, and logistic regression to examine differences between pathologies. Next, with ridge regression we examined whether lesion features (location, volume) were associated with behavioral performance. RESULTS: The PCA showed a similar cognitive impairment profile in tumors and strokes with three principal components (PCs) accounting for about half of the individual variance. PC1 loaded on language, verbal memory, and executive/working memory; PC2 loaded on general performance, visuo-spatial attention and memory, and executive functions; and, PC3 loaded on calculation, reading and visuo-spatial attention. The average lesion distribution was different, and lesion location was correlated with cognitive deficits only in stroke. Logistic regression found language and calculation more affected in stroke, and verbal memory and verbal fluency more affected in tumors. CONCLUSIONS: A similar low dimensional set of behavioral impairments was found both in stroke and brain tumors, even though each pathology caused some specific deficits in different domains. The lesion distribution was different for stroke and tumors and correlated with behavioral impairment only in stroke.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Acidente Vascular Cerebral , Humanos , Função Executiva , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Encéfalo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Memória de Curto Prazo , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética
16.
Sci Rep ; 12(1): 10862, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760834

RESUMO

Functional near infrared spectroscopy and electroencephalography are non-invasive techniques that rely on sensors placed over the scalp. The spatial localization of the measured brain activity requires the precise individuation of sensor positions and, when individual anatomical information is not available, the accurate registration of these sensor positions to a head atlas. Both these issues could be successfully addressed using a photogrammetry-based method. In this study we demonstrate that sensor positions can be accurately detected from a video recorded with a smartphone, with a median localization error of 0.7 mm, comparable if not lower, to that of conventional approaches. Furthermore, we demonstrate that the additional information of the shape of the participant's head can be further exploited to improve the registration of the sensor's positions to a head atlas, reducing the median sensor localization error of 31% compared to the standard registration approach.


Assuntos
Couro Cabeludo , Smartphone , Eletroencefalografia/métodos , Humanos , Neuroimagem , Fotogrametria/métodos
17.
Brain Commun ; 4(2): fcac082, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35474856

RESUMO

Assessment of impaired/preserved cortical regions in brain tumours is typically performed via intraoperative direct brain stimulation of eloquent areas or task-based functional MRI. One main limitation is that they overlook distal brain regions or networks that could be functionally impaired by the tumour. This study aims (i) to investigate the impact of brain tumours on the cortical synchronization of brain networks measured with resting-state functional magnetic resonance imaging (resting-state networks) both near the lesion and remotely and (ii) to test whether potential changes in resting-state networks correlate with cognitive status. The sample included 24 glioma patients (mean age: 58.1 ± 16.4 years) with different pathological staging. We developed a new method for single subject localization of resting-state networks abnormalities. First, we derived the spatial pattern of the main resting-state networks by means of the group-guided independent component analysis. This was informed by a high-resolution resting-state networks template derived from an independent sample of healthy controls. Second, we developed a spatial similarity index to measure differences in network topography and strength between healthy controls and individual brain tumour patients. Next, we investigated the spatial relationship between altered networks and tumour location. Finally, multivariate analyses related cognitive scores across multiple cognitive domains (attention, language, memory, decision making) with patterns of multi-network abnormality. We found that brain gliomas cause broad alterations of resting-state networks topography that occurred mainly in structurally normal regions outside the tumour and oedema region. Cortical regions near the tumour often showed normal synchronization. Finally, multi-network abnormalities predicted attention deficits. Overall, we present a novel method for the functional localization of resting-state networks abnormalities in individual glioma patients. These abnormalities partially explain cognitive disabilities and shall be carefully navigated during surgery.

18.
Brain Struct Funct ; 227(9): 3109-3120, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35503481

RESUMO

Gliomas are amongst the most common primary brain tumours in adults and are often associated with poor prognosis. Understanding the extent of white matter (WM) which is affected outside the tumoral lesion may be of paramount importance to explain cognitive deficits and the clinical progression of the disease. To this end, we explored both direct (i.e., tractography based) and indirect (i.e., atlas-based) approaches to quantifying WM structural disconnections in a cohort of 44 high- and low-grade glioma patients. While these methodologies have recently gained popularity in the context of stroke and other pathologies, to our knowledge, this is the first time they are applied in patients with brain tumours. More specifically, in this work, we present a quantitative comparison of the disconnection maps provided by the two methodologies by applying well-known metrics of spatial similarity, extension, and correlation. Given the important role the oedematous tissue plays in the physiopathology of tumours, we performed these analyses both by including and excluding it in the definition of the tumoral lesion. This was done to investigate possible differences determined by this choice. We found that direct and indirect approaches offer two distinct pictures of structural disconnections in patients affected by brain gliomas, presenting key differences in several regions of the brain. Following the outcomes of our analysis, we eventually discuss the strengths and pitfalls of these two approaches when applied in this critical field.


Assuntos
Neoplasias Encefálicas , Glioma , Substância Branca , Adulto , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
19.
Neuroimage Clin ; 34: 102968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220105

RESUMO

Diffusion-based biophysical models have been used in several recent works to study the microenvironment of brain tumours. While the pathophysiological interpretation of the parameters of these models remains unclear, their use as signal representations may yield useful biomarkers for monitoring the treatment and the progression of this complex and heterogeneous disease. Up to now, however, no study was devoted to assessing the mathematical stability of these approaches in cancerous brain regions. To this end, we analyzed in 11 brain tumour patients the fitting results of two microstructure models (Neurite Orientation Dispersion and Density Imaging and the Spherical Mean Technique) and of a signal representation (Diffusion Kurtosis Imaging) to compare the reliability of their parameter estimates in the healthy brain and in the tumoral lesion. The framework of our between-tissue analysis included the computation of 1) the residual sum of squares as a goodness-of-fit measure 2) the standard deviation of the models' derived metrics and 3) models' sensitivity functions to analyze the suitability of the employed protocol for parameter estimation in the different microenvironments. Our results revealed no issues concerning the fitting of the models in the tumoral lesion, with similar goodness of fit and parameter precisions occurring in normal appearing and pathological tissues. Lastly, with the aim of highlight possible biomarkers, in our analysis we briefly discuss the correlation between the metrics of the three techniques, identifying groups of indices which are significantly collinear in all tissues and thus provide no additional information when jointly used in data-driven analyses.


Assuntos
Neoplasias Encefálicas , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Reprodutibilidade dos Testes , Microambiente Tumoral
20.
Ther Adv Neurol Disord ; 15: 17562864221092124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755969

RESUMO

Background: Disease activity in the first years after a diagnosis of relapsing-remitting multiple sclerosis (RRMS) is a negative prognostic factor for long-term disability. Markers of both clinical and radiological responses to disease-modifying therapies (DMTs) are advocated. Objective: The objective of this study is to estimate the value of cerebrospinal fluid (CSF) inflammatory markers at the time of diagnosis in predicting the disease activity in treatment-naïve multiple sclerosis (MS) patients exposed to dimethyl fumarate (DMF). Methods: In total, 48 RRMS patients (31 females/17 males) treated with DMF after the diagnosis were included in this 2-year longitudinal study. All patients underwent a CSF examination, regular clinical and 3T magnetic resonance imaging (MRI) scans that included the assessment of white matter (WM) lesions, cortical lesions (CLs) and global cortical thickness. CSF levels of 10 pro-inflammatory markers - CXCL13 [chemokine (C-X-C motif) ligand 13 or B lymphocyte chemoattractant], CXCL12 (stromal cell-derived factor or C-X-C motif chemokine 12), tumour necrosis factor (TNF), APRIL (a proliferation-inducing ligand, or tumour necrosis factor ligand superfamily member 13), LIGHT (tumour necrosis factor ligand superfamily member 14 or tumour necrosis factor superfamily member 14), interferon (IFN) gamma, interleukin 12 (IL-12), osteopontin, sCD163 [soluble-CD163 (cluster of differentiation 163)] and Chitinase3-like1 - were assessed using immune-assay multiplex techniques. The combined three-domain status of 'no evidence of disease activity' (NEDA-3) was defined by no relapses, no disability worsening and no MRI activity, including CLs. Results: Twenty patients (42%) reached the NEDA-3 status; patients with disease activity showed higher CSF TNF (p = 0.009), osteopontin (p = 0.005), CXCL12 (p = 0.037), CXCL13 (p = 0.040) and IFN gamma levels (p = 0.019) compared with NEDA-3 patients. After applying a random forest approach, TNF and osteopontin revealed the most important variables associated with the NEDA-3 status. Six molecules that emerged at the random forest approach were added in a multivariate regression model with demographic, clinical and MRI measures of WM and grey matter damage as independent variables. TNF levels confirmed to be associated with the absence of disease activity: odds ratio (OR) = 0.25, CI% = 0.04-0.77. Conclusion: CSF inflammatory markers may provide prognostic information in predicting disease activity in the first years after DMF initiation. CSF TNF levels are a possible candidate in predicting treatment response, in addition to clinical, demographic and MRI variables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA