Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Cyst Fibros ; 3 Suppl 2: 37-41, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15463923

RESUMO

Studies on CFTR protein expression and localization in native tissues or in primary cultures of human epithelial cells are scarce due to the intrinsic instability of this protein, its low expression in most tissues and also to technical difficulties. However, such data are of the highest importance to understand the pathophysiology of CF. The purpose of this article is to outline several assays for the characterization of primary epithelial cultures and to review different CFTR immunostaining protocols.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Expressão Gênica/imunologia , Imuno-Histoquímica/métodos , Técnicas de Cultura de Células , Fibrose Cística/genética , Fibrose Cística/imunologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais , Humanos
2.
Stem Cells ; 23(7): 992-1001, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16043462

RESUMO

Airway epithelium stem cells have not yet been prospectively identified, but it is generally assumed that both secretory and basal cells have the capacity to divide and differentiate. Previously, we developed a test for progenitor cells of the human airway epithelium, relying on the transplantation of fetal respiratory tissues into immunodeficient mice. In this study, we hypothesized that airway-repopulating epithelial progenitors can be marked with surface antigens, and we screened an array of such candidate markers, including lectin ligands, the CD44 and CD166 adhesion molecules, and the aquaporin-3 (AQP3) water channel. We observed that AQP3 is selectively expressed on the surface of basal cells, allowing the separation by flow cytometry of AQP3+ basal cells and AQP3- ciliated and secretory cells. Functional evaluation of sorted cells in vivo showed that AQP3+ cells can restore a normal pseudostratified, mucociliary epithelium as well as submucosal glands. AQP3- cells are also endowed with a similar potential, although faster engraftment suggests their inclusion of more committed progenitors. These results show that stem cell candidates in the human tracheo-bronchial mucosa can be positively selected with a novel marker but also, for the first time, that epithelial progenitors exist among both basal and suprabasal cell subsets within the human airway.


Assuntos
Aquaporinas/biossíntese , Células Epiteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/embriologia , Células-Tronco/citologia , Traqueia/embriologia , Molécula de Adesão de Leucócito Ativado/biossíntese , Animais , Aquaporina 3 , Diferenciação Celular , Separação Celular , Transplante de Células , Citometria de Fluxo , Humanos , Receptores de Hialuronatos/biossíntese , Imuno-Histoquímica , Lectinas/metabolismo , Ligantes , Camundongos , Camundongos SCID
3.
J Gene Med ; 6(8): 846-56, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15293343

RESUMO

BACKGROUND: Following injury to the airway epithelium, rapid regeneration of a functional epithelium is necessary in order to restore the epithelial barrier integrity. In the perspective of airway gene/cell therapy, we analyzed the capacity of human airway epithelial cells cultured as three-dimensional (3-D) spheroid structures to be efficiently transduced on long term by a pseudotyped lentiviral vector. The capacity of the 3-D spheroid structures to repopulate a denuded tracheal basement membrane and regenerate a well-differentiated airway epithelium was also analyzed. METHODS: An HIV-1-derived VSV-G pseudotyped lentiviral vector encoding the enhanced green fluorescent protein (eGFP) was used. Airway epithelial cells were isolated from mature human fetal tracheas and airway xenografts, cultured as 3-D spheroid structures, and either transduced at multiplicity of infection (MOI) 10 and 100 or assayed in an ex vivo and in vivo model to evaluate their regeneration capacity. RESULTS: An in vivo repopulation assay in SCID-hu mice with transduced isolated fetal airway epithelial cells shows that lentiviral transduction does not alter the airway reconstitution. Transduction of the 3-D spheroid structures shows that 12% of cells were eGFP-positive for up to 80 days. In ex vivo and in vivo assays (NUDE-hu mice), the 3-D spheroid structures are able to repopulate denuded basement membrane and reconstitute a well-differentiated human airway surface epithelium. CONCLUSIONS: The efficient and long-term lentiviral transduction of 3-D spheroid structures together with their capacity to regenerate a well-differentiated mucociliary epithelium demonstrate the potential relevance of these 3-D structures in human airway gene/cell therapy.


Assuntos
Células Epiteliais/fisiologia , Epitélio/fisiologia , Técnicas de Transferência de Genes , Vetores Genéticos , Lentivirus/genética , Regeneração , Esferoides Celulares/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Traqueia/citologia , Traqueia/fisiologia , Transdução Genética
4.
Lab Invest ; 82(8): 989-98, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12177237

RESUMO

We have previously shown that, in normal human airway tissue, localization of the cystic fibrosis transmembrane conductance regulator (CFTR) can be affected by epithelial maturation, polarity, and differentiation and that CFTR trafficking and apical localization depend on the integrity of the airway epithelium. In this study, we addressed the question of whether the three-dimensional (3-D) organization of adult human airway epithelial cells in suspension culture under rotation, leading to spheroid-like structures, could mimic the in vivo phenomenon of differentiation and polarization. The kinetics of the differentiation, polarity, and formation of the CFTR-ZO-1-ezrin complex was analyzed by transmission, scanning, and immunofluorescence microscopy. Functional activity of the airway surface epithelium was assessed by monitoring the degree of cAMP-stimulated chloride efflux from cultured cells. Our results show that after the initial step of dedifferentiation, characterized by a loss of ciliated cells and disappearance of epithelial subapical CFTR-ezrin-ZO-1 complex, the isolated cells formed 3-D spheroid structures within 24 hours. After 15 days, progressive ciliogenesis was observed and secretory cells could be identified. After 35 days of 3-D culture, ZO-1, CFTR, ezrin, and CD59 were apically or subapically located, and well-differentiated secretory and ciliated cells were identified. CFTR functionality was assessed by analyzing the Cl(-) secretion after amiloride and forskolin perfusion. After 35 days of culture of spheroids in suspension, a significant increase in Cl(-) efflux was observed in well-differentiated ciliated cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regeneração/fisiologia , Mucosa Respiratória/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA