Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Infect Dis ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805234

RESUMO

BACKGROUND: The clinical severity of genital HSV-2 infection varies widely among infected persons with some experiencing frequent genital lesions while others are asymptomatic. The viral genital shedding rate is closely associated with and has been established as a surrogate marker of clinical severity. METHODS: To assess the relationship between viral genetics and shedding, we assembled a set of 145 persons who had the severity of their genital herpes quantified through determination of their HSV genital shedding rate. An HSV-2 sample from each person was sequenced and biallelic variants among these genomes were identified. RESULTS: We found no association between metrics of genome-wide variation in HSV-2 and shedding rate. A viral genome-wide association study (vGWAS) identified the minor alleles of three individual unlinked variants as significantly associated with higher shedding rate (p<8.4x10-5): C44973T (A512T), a non-synonymous variant in UL22 (glycoprotein H); A74534G, a synonymous variant in UL36 (large tegument protein); and T119283C, an intergenic variant. We also found an association between the total number of minor alleles for the significant variants and shedding rate (p=6.6x10-7). CONCLUSIONS: These results add to a growing body of literature for HSV suggesting a connection between viral genetic variation and clinically important phenotypes of infection.

2.
BMC Infect Dis ; 24(1): 309, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481147

RESUMO

BACKGROUND: Early during the COVID-19 pandemic, it was important to better understand transmission dynamics of SARS-CoV-2, the virus that causes COVID-19. Household contacts of infected individuals are particularly at risk for infection, but delays in contact tracing, delays in testing contacts, and isolation and quarantine posed challenges to accurately capturing secondary household cases. METHODS: In this study, 346 households in the Seattle region were provided with respiratory specimen collection kits and remotely monitored using web-based surveys for respiratory illness symptoms weekly between October 1, 2020, and June 20, 2021. Symptomatic participants collected respiratory specimens at symptom onset and mailed specimens to the central laboratory in Seattle. Specimens were tested for SARS-CoV-2 using RT-PCR with whole genome sequencing attempted when positive. SARS-CoV-2-infected individuals were notified, and their household contacts submitted specimens every 2 days for 14 days. RESULTS: In total, 1371 participants collected 2029 specimens that were tested; 16 individuals (1.2%) within 6 households tested positive for SARS-CoV-2 during the study period. Full genome sequences were generated from 11 individuals within 4 households. Very little genetic variation was found among SARS-CoV-2 viruses sequenced from different individuals in the same household, supporting transmission within the household. CONCLUSIONS: This study indicates web-based surveillance of respiratory symptoms, combined with rapid and longitudinal specimen collection and remote contact tracing, provides a viable strategy to monitor households and detect household transmission of SARS-CoV-2. TRIAL REGISTRATION IDENTIFIER: NCT04141930, Date of registration 28/10/2019.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Pandemias , Quarentena , SARS-CoV-2/genética , Washington/epidemiologia
3.
Blood ; 138(17): 1628-1636, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34269803

RESUMO

Human cytomegalovirus (CMV) reactivation is a frequent complication of allogeneic hematopoietic cell transplantation (HCT). Despite routine screening for CMV reactivation and early antiviral treatment, the rates of CMV-related complications after HCT remain high. Genetic variants in both the donor and recipient have been associated with the risk of CMV reactivation and disease after HCT, but these associations have not been validated, and their clinical importance remains unclear. In this study, we assessed 117 candidate variants previously associated with CMV-related phenotypes for association with CMV reactivation and disease in a cohort of 2169 CMV-seropositive HCT recipients. We also carried out a genome-wide association study (GWAS) for CMV reactivation and disease in the same cohort. Both analyses used a prespecified discovery and replication approach to control the risk of false-positive results. Among the 117 candidate variants, our analysis implicates only the donor ABCB1 rs1045642 genotype as a risk factor for CMV reactivation. This synonymous variant in P-glycoprotein may influence the risk of CMV reactivation by altering the efflux of cyclosporine and tacrolimus from donor lymphocytes. In the GWAS analysis, the donor CDC42EP3 rs11686168 genotype approached the significance threshold for association with CMV reactivation, although we could not identify a mechanism to explain this association. The results of this study suggest that most genomic variants previously associated with CMV phenotypes do not significantly alter the risk for CMV reactivation or disease after HCT.


Assuntos
Infecções por Citomegalovirus/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Citomegalovirus/isolamento & purificação , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/etiologia , Feminino , Reguladores de Proteínas de Ligação ao GTP/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Transplante Homólogo/efeitos adversos , Ativação Viral , Adulto Jovem
4.
J Infect Dis ; 226(2): 217-224, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35091746

RESUMO

BACKGROUND: Residents and staff of emergency shelters for people experiencing homelessness (PEH) are at high risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The importance of shelter-related transmission of SARS-CoV-2 in this population remains unclear. It is also unknown whether there is significant spread of shelter-related viruses into surrounding communities. METHODS: We analyzed genome sequence data for 28 SARS-CoV-2-positive specimens collected from 8 shelters in King County, Washington between March and October, 2020. RESULTS: We identified at least 12 separate SARS-CoV-2 introduction events into these 8 shelters and estimated that 57% (16 of 28) of the examined cases of SARS-CoV-2 infection were the result of intrashelter transmission. However, we identified just a few SARS-CoV-2 specimens from Washington that were possible descendants of shelter viruses. CONCLUSIONS: Our data suggest that SARS-CoV-2 spread in shelters is common, but we did not observe evidence of widespread transmission of shelter-related viruses into the general population.


Assuntos
COVID-19 , Pessoas Mal Alojadas , COVID-19/epidemiologia , Abrigo de Emergência , Humanos , Filogenia , SARS-CoV-2/genética
5.
J Infect Dis ; 226(Suppl 3): S304-S314, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35749582

RESUMO

BACKGROUND: Rhinovirus (RV) is a common cause of respiratory illness in all people, including those experiencing homelessness. RV epidemiology in homeless shelters is unknown. METHODS: We analyzed data from a cross-sectional homeless shelter study in King County, Washington, October 2019-May 2021. Shelter residents or guardians aged ≥3 months reporting acute respiratory illness completed questionnaires and submitted nasal swabs. After 1 April 2020, enrollment expanded to residents and staff regardless of symptoms. Samples were tested by multiplex RT-PCR for respiratory viruses. A subset of RV-positive samples was sequenced. RESULTS: There were 1066 RV-positive samples with RV present every month of the study period. RV was the most common virus before and during the coronavirus disease 2019 (COVID-19) pandemic (43% and 77% of virus-positive samples, respectively). Participants from family shelters had the highest prevalence of RV. Among 131 sequenced samples, 33 RV serotypes were identified with each serotype detected for ≤4 months. CONCLUSIONS: RV infections persisted through community mitigation measures and were most prevalent in shelters housing families. Sequencing showed a diversity of circulating RV serotypes, each detected over short periods of time. Community-based surveillance in congregate settings is important to characterize respiratory viral infections during and after the COVID-19 pandemic. CLINICAL TRIALS REGISTRATION: NCT04141917.


Assuntos
COVID-19 , Infecções por Enterovirus , Pessoas Mal Alojadas , Vírus , COVID-19/epidemiologia , Estudos Transversais , Infecções por Enterovirus/epidemiologia , Genômica , Humanos , Pandemias , Rhinovirus/genética , Washington/epidemiologia
6.
Emerg Infect Dis ; 28(11): 2343-2347, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150508

RESUMO

To determine the epidemiology of human parainfluenza virus in homeless shelters during the COVID-19 pandemic, we analyzed data and sequences from respiratory specimens collected in 23 shelters in Washington, USA, during 2019-2021. Two clusters in children were genetically similar by shelter of origin. Shelter-specific interventions are needed to reduce these infections.


Assuntos
COVID-19 , Pessoas Mal Alojadas , Infecções por Paramyxoviridae , Criança , Humanos , COVID-19/epidemiologia , Pandemias , Washington/epidemiologia , Infecções por Paramyxoviridae/epidemiologia
7.
J Infect Dis ; 223(2): 197-205, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535236

RESUMO

Most individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop neutralizing antibodies that target the viral spike protein. In this study, we quantified how levels of these antibodies change in the months after SARS-CoV-2 infection by examining longitudinal samples collected approximately 30-152 days after symptom onset from a prospective cohort of 32 recovered individuals with asymptomatic, mild, or moderate-severe disease. Neutralizing antibody titers declined an average of about 4-fold from 1 to 4 months after symptom onset. This decline in neutralizing antibody titers was accompanied by a decline in total antibodies capable of binding the viral spike protein or its receptor-binding domain. Importantly, our data are consistent with the expected early immune response to viral infection, where an initial peak in antibody levels is followed by a decline to a lower plateau. Additional studies of long-lived B cells and antibody titers over longer time frames are necessary to determine the durability of immunity to SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Adulto Jovem
8.
J Clin Microbiol ; 59(5)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33563599

RESUMO

While influenza and other respiratory pathogens cause significant morbidity and mortality, the community-based burden of these infections remains incompletely understood. The development of novel methods to detect respiratory infections is essential for mitigating epidemics and developing pandemic-preparedness infrastructure. From October 2019 to March 2020, we conducted a home-based cross-sectional study in the greater Seattle, WA, area, utilizing electronic consent and data collection instruments. Participants received nasal swab collection kits via rapid delivery within 24 hours of self-reporting respiratory symptoms. Samples were returned to the laboratory and were screened for 26 respiratory pathogens and a housekeeping gene. Participant data were recorded via online survey at the time of sample collection and 1 week later. Of the 4,572 consented participants, 4,359 (95.3%) received a home swab kit and 3,648 (83.7%) returned a nasal specimen for respiratory pathogen screening. The 3,638 testable samples had a mean RNase P relative cycle threshold (Crt ) value of 19.0 (SD, 3.4), and 1,232 (33.9%) samples had positive results for one or more pathogens, including 645 (17.7%) influenza-positive specimens. Among the testable samples, the median time between shipment of the home swab kit and completion of laboratory testing was 8.0 days (interquartile range [IQR], 7.0 to 14.0). A single adverse event occurred and did not cause long-term effects or require medical attention. Home-based surveillance using online participant enrollment and specimen self-collection is a safe and feasible method for community-level monitoring of influenza and other respiratory pathogens, which can readily be adapted for use during pandemics.


Assuntos
Influenza Humana , Infecções Respiratórias , Estudos Transversais , Humanos , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Pandemias , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Manejo de Espécimes
9.
J Infect Dis ; 221(12): 2035-2042, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31970398

RESUMO

Antiviral resistance frequently complicates the treatment of herpes simplex virus (HSV) infections in immunocompromised patients. Here we present the case of an adolescent boy with dedicator of cytokinesis 8 (DOCK8) deficiency, who experienced recurrent infections with resistant HSV-1. We used both phenotypic and genotypic methodologies to characterize the resistance profile of HSV-1 in the patient and conclude that genotypic testing outperformed phenotypic testing. We also present the first analysis of intrahost HSV-1 evolution in an immunocompromised patient. While HSV-1 can remain static in an immunocompetent individual for decades, the virus from this patient rapidly acquired genetic changes throughout its genome. Finally, we document a likely case of transmitted resistance in HSV-1 between the patient and his brother, who also has DOCK8 deficiency. This event demonstrates that resistant HSV-1 is transmissible among immunocompromised persons.


Assuntos
Farmacorresistência Viral/genética , Técnicas de Genotipagem/métodos , Fatores de Troca do Nucleotídeo Guanina/deficiência , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/genética , Adolescente , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Viral/genética , DNA Viral/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/imunologia , Herpes Simples/diagnóstico , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/isolamento & purificação , Humanos , Hospedeiro Imunocomprometido/genética , Masculino , Testes de Sensibilidade Microbiana/métodos , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Pele/patologia , Pele/virologia
10.
J Infect Dis ; 221(8): 1271-1279, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-31016321

RESUMO

BACKGROUND: The ubiquitous human pathogens, herpes simplex virus (HSV)-1 and HSV-2, are distinct viral species that diverged approximately 6 million years ago. At least 4 small, ancient HSV-1 × HSV-2 interspecies recombination events have affected the HSV-2 genome, with recombinants and nonrecombinants at each locus circulating today. However, it is unknown whether interspecies recombination can affect other loci and whether new recombinants continue to be generated. METHODS: Using 255 newly sequenced and 230 existing HSV genome sequences, we comprehensively assessed interspecies recombination in HSV. RESULTS: Our findings show that the sizes and locations of interspecies recombination events in HSV-2 are significantly more variable than previously appreciated and that they can impact species-specific T-cell recognition of HSV. CONCLUSIONS: We describe 2 large (>5 kb) recombination events, one of which arose in its current host, demonstrating that interspecies recombination continues to occur today. These results raise concerns about the use of live-attenuated HSV-2 vaccines in high HSV-1 prevalence areas.


Assuntos
Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Recombinação Genética/genética , DNA Viral/genética , Genoma Viral/genética , Herpes Simples/virologia , Humanos , Filogenia , Especificidade da Espécie
11.
J Clin Microbiol ; 58(6)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32269100

RESUMO

Nearly 400,000 people worldwide are known to have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) beginning in December 2019. The virus has now spread to over 168 countries including the United States, where the first cluster of cases was observed in the Seattle metropolitan area in Washington. Given the rapid increase in the number of cases in many localities, the availability of accurate, high-throughput SARS-CoV-2 testing is vital to efforts to manage the current public health crisis. In the course of optimizing SARS-CoV-2 testing performed by the University of Washington Clinical Virology Lab (UW Virology Lab), we evaluated assays using seven different primer-probe sets and one assay kit. We found that the most sensitive assays were those that used the E-gene primer-probe set described by Corman et al. (V. M. Corman, O. Landt, M. Kaiser, R. Molenkamp, et al., Euro Surveill 25:2000045, 2020, https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045) and the N2 set developed by the CDC (Division of Viral Diseases, Centers for Disease Control and Prevention, 2020, https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf). All assays tested were found to be highly specific for SARS-CoV-2, with no cross-reactivity with other respiratory viruses observed in our analyses regardless of the primer-probe set or kit used. These results will provide valuable information to other clinical laboratories who are actively developing SARS-CoV-2 testing protocols at a time when increased testing capacity is urgently needed worldwide.


Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Genoma Viral , Humanos , Pandemias , RNA Viral/análise , SARS-CoV-2
12.
Clin Infect Dis ; 69(6): 941-948, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30576430

RESUMO

BACKGROUND: Norovirus outbreaks in hospital settings are a common challenge for infection prevention teams. Given the high burden of norovirus in most communities, it can be difficult to distinguish between ongoing in-hospital transmission of the virus and new introductions from the community, and it is challenging to understand the long-term impacts of outbreak-associated viruses within medical systems using traditional epidemiological approaches alone. METHODS: Real-time metagenomic sequencing during an ongoing norovirus outbreak associated with a retrospective cohort study. RESULTS: We describe a hospital-associated norovirus outbreak that affected 13 patients over a 27-day period in a large, tertiary, pediatric hospital. The outbreak was chronologically associated with a spike in self-reported gastrointestinal symptoms among staff. Real-time metagenomic next-generation sequencing (mNGS) of norovirus genomes demonstrated that 10 chronologically overlapping, hospital-acquired norovirus cases were partitioned into 3 discrete transmission clusters. Sequencing data also revealed close genetic relationships between some hospital-acquired and some community-acquired cases. Finally, this data was used to demonstrate chronic viral shedding by an immunocompromised, hospital-acquired case patient. An analysis of serial samples from this patient provided novel insights into the evolution of norovirus within an immunocompromised host. CONCLUSIONS: This study documents one of the first applications of real-time mNGS during a hospital-associated viral outbreak. Given its demonstrated ability to detect transmission patterns within outbreaks and elucidate the long-term impacts of outbreak-associated viral strains on patients and medical systems, mNGS constitutes a powerful resource to help infection control teams understand, prevent, and respond to viral outbreaks.


Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Surtos de Doenças , Metagenômica , Norovirus/genética , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/transmissão , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/virologia , Evolução Molecular , Feminino , Genótipo , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Epidemiologia Molecular , Norovirus/classificação , Filogenia , Estudos Retrospectivos
13.
PLoS Pathog ; 9(8): e1003543, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23966858

RESUMO

Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), is estimated to infect a new host every second. While analyses of genetic data from natural populations of M.tb have emphasized the role of genetic drift in shaping patterns of diversity, the influence of natural selection on this successful pathogen is less well understood. We investigated the effects of natural selection on patterns of diversity in 63 globally extant genomes of M.tb and related pathogenic mycobacteria. We found evidence of strong purifying selection, with an estimated genome-wide selection coefficient equal to -9.5 × 10(-4) (95% CI -1.1 × 10(-3) to -6.8 × 10(-4)); this is several orders of magnitude higher than recent estimates for eukaryotic and prokaryotic organisms. We also identified different patterns of variation across categories of gene function. Genes involved in transport and metabolism of inorganic ions exhibited very low levels of non-synonymous polymorphism, equivalent to categories under strong purifying selection (essential and translation-associated genes). The highest levels of non-synonymous variation were seen in a group of transporter genes, likely due to either diversifying selection or local selective sweeps. In addition to selection, we identified other important influences on M.tb genetic diversity, such as a 25-fold expansion of global M.tb populations coincident with explosive growth in human populations (estimated timing 1684 C.E., 95% CI 1620-1713 C.E.). These results emphasize the parallel demographic histories of this obligate pathogen and its human host, and suggest that the dominant effect of selection on M.tb is removal of novel variants, with exceptions in an interesting group of genes involved in transportation and defense. We speculate that the hostile environment within a host imposes strict demands on M.tb physiology, and thus a substantial fitness cost for most new mutations. In this respect, obligate bacterial pathogens may differ from other host-associated microbes such as symbionts.


Assuntos
Evolução Molecular , Mycobacterium tuberculosis/genética , Polimorfismo Genético/genética , Seleção Genética/genética , Tuberculose/microbiologia , Genoma Bacteriano , Humanos , Mycobacterium tuberculosis/classificação , Filogenia , Recombinação Genética , Tuberculose/genética
14.
PLoS Genet ; 7(1): e1001266, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21253569

RESUMO

Genome-wide association studies (GWAS) have identified more than 2,000 trait-SNP associations, and the number continues to increase. GWAS have focused on traits with potential consequences for human fitness, including many immunological, metabolic, cardiovascular, and behavioral phenotypes. Given the polygenic nature of complex traits, selection may exert its influence on them by altering allele frequencies at many associated loci, a possibility which has yet to be explored empirically. Here we use 38 different measures of allele frequency variation and 8 iHS scores to characterize over 1,300 GWAS SNPs in 53 globally distributed human populations. We apply these same techniques to evaluate SNPs grouped by trait association. We find that groups of SNPs associated with pigmentation, blood pressure, infectious disease, and autoimmune disease traits exhibit unusual allele frequency patterns and elevated iHS scores in certain geographical locations. We also find that GWAS SNPs have generally elevated scores for measures of allele frequency variation and for iHS in Eurasia and East Asia. Overall, we believe that our results provide evidence for selection on several complex traits that has caused changes in allele frequencies and/or elevated iHS scores at a number of associated loci. Since GWAS SNPs collectively exhibit elevated allele frequency measures and iHS scores, selection on complex traits may be quite widespread. Our findings are most consistent with this selection being either positive or negative, although the relative contributions of the two are difficult to discern. Our results also suggest that trait-SNP associations identified in Eurasian samples may not be present in Africa, Oceania, and the Americas, possibly due to differences in linkage disequilibrium patterns. This observation suggests that non-Eurasian and non-East Asian sample populations should be included in future GWAS.


Assuntos
Genética Populacional , Genoma Humano , Polimorfismo de Nucleotídeo Único , Seleção Genética , Alelos , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos
15.
Influenza Other Respir Viruses ; 17(1): e13092, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610058

RESUMO

BACKGROUND: Persons experiencing homelessness face increased risk of influenza as overcrowding in congregate shelters can facilitate influenza virus spread. Data regarding on-site influenza testing and antiviral treatment within homeless shelters remain limited. METHODS: We conducted a cluster-randomized stepped-wedge trial of point-of-care molecular influenza testing coupled with antiviral treatment with baloxavir or oseltamivir in residents of 14 homeless shelters in Seattle, WA, USA. Residents ≥3 months with cough or ≥2 acute respiratory illness (ARI) symptoms and onset <7 days were eligible. In control periods, mid-nasal swabs were tested for influenza by reverse transcription polymerase chain reaction (RT-PCR). The intervention period included on-site rapid molecular influenza testing and antiviral treatment for influenza-positives if symptom onset was <48 h. The primary endpoint was monthly influenza virus infections in the control versus intervention periods. Influenza whole genome sequencing was performed to assess transmission and antiviral resistance. RESULTS: During 11/15/2019-4/30/2020 and 11/2/2020-4/30/2021, 1283 ARI encounters from 668 participants were observed. Influenza virus was detected in 51 (4%) specimens using RT-PCR (A = 14; B = 37); 21 influenza virus infections were detected from 269 (8%) intervention-eligible encounters by rapid molecular testing and received antiviral treatment. Thirty-seven percent of ARI-participant encounters reported symptom onset < 48 h. The intervention had no effect on influenza virus transmission (adjusted relative risk 1.73, 95% confidence interval [CI] 0.50-6.00). Of 23 influenza genomes, 86% of A(H1N1)pdm09 and 81% of B/Victoria sequences were closely related. CONCLUSION: Our findings suggest feasibility of influenza test-and-treat strategies in shelters. Additional studies would help discern an intervention effect during periods of increased influenza activity.


Assuntos
Pessoas Mal Alojadas , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Influenza Humana/diagnóstico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H1N1/genética , Oseltamivir/uso terapêutico , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico
16.
Hum Biol ; 84(6): 641-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23959643

RESUMO

Single nucleotide polymorphisms (SNPs) with large allele frequency differences between human populations are relatively rare. The longest run of SNPs with an allele frequency difference of one between the Yoruba of Nigeria and the Han Chinese is found on the long arm of the X chromosome in the intergenic region separating the EDA2R and AR genes. It has been proposed that the unusual allele frequency distributions of these SNPs are the result of a selective sweep affecting African populations that occurred after the out-of-Africa migration. To investigate the evolutionary history of the EDA2R/AR intergenic region, we characterized the haplotype structure of 52 of its highly differentiated SNPs. Using a publicly available data set of 3,000 X chromosomes from 65 human populations, we found that nearly all human X chromosomes carry one of two modal haplotypes for these 52 SNPs. The predominance of two highly divergent haplotypes at this locus was confirmed by use of a subset of individuals sequenced to high coverage. The first of these haplotypes, the α-haplotype is at high frequencies in most of the African populations surveyed and likely arose before the separation of African populations into distinct genetic entities. The second, the ß-haplotype, is frequent or fixed in all non-African populations and likely arose in East Africa before the out-of-Africa migration. We also observed a small group or rare haplotypes with no clear relationship to the α- and ß-haplotypes. These haplotypes occur at relatively high frequencies in African hunter-gatherer populations, such as the San and Mbuti Pygmies. Our analysis indicates that these haplotypes are part of a pool of diverse, ancestral haplotypes that have now been almost entirely replaced by the α- and ß-haplotypes. We suggest that the rise of the α- and ß-haplotypes was the result of the demographic forces that human populations experienced during the formation of modern African populations and the out-of-Africa migration. However, we also present evidence that this region is the target of selection in the form of positive selection on the α- and ß-haplotypes and of purifying the selection against α/ß recombinants.


Assuntos
Povo Asiático/genética , População Negra/genética , DNA Intergênico/genética , Genoma Humano , Haplótipos/genética , Receptores Androgênicos/genética , Receptor Xedar/genética , Alelos , Evolução Biológica , Cromossomos Humanos X , Feminino , Frequência do Gene , Genética Populacional , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
17.
Blood Rev ; 53: 100906, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34802773

RESUMO

The diagnosis of infectious diseases in immunocompromised hosts presents unique challenges for the clinician. Metagenomic next generation sequencing (mNGS) based diagnostics that identify microbial nucleic acids in clinical samples (mNGS for pathogen identification or mNGSpi) may be a useful tool in addressing some of these challenges. Studies of mNGSpi in immunocompromised hosts have demonstrated that these diagnostics are capable of identifying causative organisms in a subset of patients for whom conventional testing has been negative. While these studies provide proof of concept for mNGSpi utility, they have a number of limitations, which make it difficult to confidently assess test performance and clinical impact based on current data. Future studies will likely feature larger cohort sizes and controlled interventional study designs that assess the impact of mNGSpi on clinical endpoints. They will also likely include assessments of the clinical value of data generated by mNGS beyond pathogen identification.


Assuntos
Doenças Transmissíveis , Sequenciamento de Nucleotídeos em Larga Escala , Doenças Transmissíveis/diagnóstico , Humanos , Hospedeiro Imunocomprometido , Metagenômica , Sensibilidade e Especificidade
18.
Sci Rep ; 12(1): 5856, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393464

RESUMO

Rapid dissemination of SARS-CoV-2 sequencing data to public repositories has enabled widespread study of viral genomes, but studies of longitudinal specimens from infected persons are relatively limited. Analysis of longitudinal specimens enables understanding of how host immune pressures drive viral evolution in vivo. Here we performed sequencing of 49 longitudinal SARS-CoV-2-positive samples from 20 patients in Washington State collected between March and September of 2020. Viral loads declined over time with an average increase in RT-QPCR cycle threshold of 0.87 per day. We found that there was negligible change in SARS-CoV-2 consensus sequences over time, but identified a number of nonsynonymous variants at low frequencies across the genome. We observed enrichment for a relatively small number of these variants, all of which are now seen in consensus genomes across the globe at low prevalence. In one patient, we saw rapid emergence of various low-level deletion variants at the N-terminal domain of the spike glycoprotein, some of which have previously been shown to be associated with reduced neutralization potency from sera. In a subset of samples that were sequenced using metagenomic methods, differential gene expression analysis showed a downregulation of cytoskeletal genes that was consistent with a loss of ciliated epithelium during infection and recovery. We also identified co-occurrence of bacterial species in samples from multiple hospitalized individuals. These results demonstrate that the intrahost genetic composition of SARS-CoV-2 is dynamic during the course of COVID-19, and highlight the need for continued surveillance and deep sequencing of minor variants.


Assuntos
COVID-19 , COVID-19/genética , Genoma Viral , Humanos , Metagenoma , Metagenômica , SARS-CoV-2/genética
19.
Lancet Reg Health Am ; 15: 100348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35996440

RESUMO

Background: The circulation of respiratory viruses poses a significant health risk among those residing in congregate settings. Data are limited on seasonal human coronavirus (HCoV) infections in homeless shelter settings. Methods: We analysed data from a clinical trial and SARS-CoV-2 surveillance study at 23 homeless shelter sites in King County, Washington between October 2019-May 2021. Eligible participants were shelter residents aged ≥3 months with acute respiratory illness. We collected enrolment data and nasal samples for respiratory virus testing using multiplex RT-PCR platform including HCoV. Beginning April 1, 2020, eligibility expanded to shelter residents and staff regardless of symptoms. HCoV species was determined by RT-PCR with species-specific primers, OpenArray assay or genomic sequencing for samples with an OpenArray relative cycle threshold <22. Findings: Of the 14,464 samples from 3281 participants between October 2019-May 2021, 107 were positive for HCoV from 90 participants (median age 40 years, range: 0·9-81 years, 38% female). HCoV-HKU1 was the most common species identified before and after community-wide mitigation. No HCoV-positive samples were identified between May 2020-December 2020. Adults aged ≥50 years had the highest detection of HCoV (11%) among virus-positive samples among all age-groups. Species and sequence data showed diversity between and within HCoV species over the study period. Interpretation: HCoV infections occurred in all congregate homeless shelter site age-groups with the greatest proportion among those aged ≥50 years. Species and sequencing data highlight the complexity of HCoV epidemiology within and between shelters sites. Funding: Gates Ventures, Centers for Disease Control and Prevention, National Institute of Health.

20.
Nat Commun ; 13(1): 5240, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068236

RESUMO

Novel variants continue to emerge in the SARS-CoV-2 pandemic. University testing programs may provide timely epidemiologic and genomic surveillance data to inform public health responses. We conducted testing from September 2021 to February 2022 in a university population under vaccination and indoor mask mandates. A total of 3,048 of 24,393 individuals tested positive for SARS-CoV-2 by RT-PCR; whole genome sequencing identified 209 Delta and 1,730 Omicron genomes of the 1,939 total sequenced. Compared to Delta, Omicron had a shorter median serial interval between genetically identical, symptomatic infections within households (2 versus 6 days, P = 0.021). Omicron also demonstrated a greater peak reproductive number (2.4 versus 1.8), and a 1.07 (95% confidence interval: 0.58, 1.57; P < 0.0001) higher mean cycle threshold value. Despite near universal vaccination and stringent mitigation measures, Omicron rapidly displaced the Delta variant to become the predominant viral strain and led to a surge in cases in a university population.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Genoma Viral/genética , Genômica , Humanos , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA