Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Nature ; 632(8026): 808-814, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112697

RESUMO

Earth harbours an extraordinary plant phenotypic diversity1 that is at risk from ongoing global changes2,3. However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6-shape the trait covariation that underlies plant phenotypic diversity1,7. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.


Assuntos
Biodiversidade , Clima Desértico , Herbivoria , Gado , Fenótipo , Plantas , Animais , Mudança Climática , Herbivoria/fisiologia , Gado/fisiologia , Plantas/química , Plantas/classificação , Mapeamento Geográfico
2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654744

RESUMO

Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Leishmania/enzimologia , NADH Desidrogenase/metabolismo , Animais , Transporte de Elétrons , Leishmania/fisiologia , Leishmaniose/enzimologia , Mutação , NADH Desidrogenase/genética , Oxirredução
3.
Biochem Soc Trans ; 50(5): 1237-1246, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36281987

RESUMO

Single-cell transcriptomics has revolutionised biology allowing the quantification of gene expression in individual cells. Since each single cell contains cell type specific mRNAs, these techniques enable the classification of cell identities. Therefore, single cell methods have been used to explore the repertoire of cell types (the single cell atlas) of different organisms, including freshwater planarians. Nowadays, planarians are one of the most prominent animal models in single cell biology. They have been studied at the single cell level for over a decade using most of the available single cell methodological approaches. These include plate-based methods, such as qPCR, nanodroplet methods and in situ barcoding methods. Because of these studies, we now have a very good picture of planarian cell types and their differentiation trajectories. Planarian regenerative properties and other characteristics, such as their developmental plasticity and their capacity to reproduce asexually, ensure that another decade of single cell biology in planarians is yet to come. Here, we review these characteristics, the new biological insights that have been obtained by single-cell transcriptomics and outline the perspectives for the future.


Assuntos
Planárias , Células-Tronco Pluripotentes , Animais , Planárias/genética , Planárias/metabolismo , Transcriptoma , Diferenciação Celular , RNA Mensageiro/metabolismo , Regeneração/genética
4.
J Appl Toxicol ; 42(1): 73-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101210

RESUMO

Ethylhexyl methoxycinnamate (EHMC) (CAS number: 5466-77-3) and butyl methoxydibenzoylmethane (BMDM) (CAS number: 70356-09-1) are important sunscreens. However, frequent application of large amounts of these compounds may reflect serious environmental impact, once it enters the environment through indirect release via wastewater treatment or immediate release during water activities. In this article, we reviewed the toxicological effects of EHMC and BMDM on aquatic ecosystems and the human consequences. According to the literature, EHMC and BMDM have been detected in water samples and sediments worldwide. Consequently, these compounds are also present in several marine organisms like fish, invertebrates, coral reefs, marine mammals, and other species, due to its bioaccumulation potential. Studies show that these chemicals are capable of damaging the aquatic beings in different ways. Further, bioaccumulation studies have shown that EHMC biomagnifies through trophic levels, which makes human seafood consumption a concern because the higher position in the trophic chain, the more elevate levels of ultraviolet (UV) filters are detected, and it is established that EHMC present adverse effects on the human organism. In contrast, there are no studies on the BMDM bioaccumulation and biomagnification potential. Different strategies can be adopted to avoid the damage caused by sunscreens in the environment and human organism. Two of them include the use of natural photoprotectors, such as polyphenols, in association with UV filters in sunscreens and the development of new and safer UV filters. Overall, this review shows the importance of studying the impacts of sunscreens in nature and developing safer sunscreens and formulations to safeguard marine fauna, ecosystems, and humans.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Cinamatos/toxicidade , Peixes , Invertebrados/efeitos dos fármacos , Propiofenonas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Humanos
5.
Antimicrob Agents Chemother ; 65(7): e0151320, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33903112

RESUMO

Leishmaniasis is one of the most challenging neglected tropical diseases and remains a global threat to public health. Currently available therapies for leishmaniases present significant drawbacks and are rendered increasingly inefficient due to parasite resistance, making the need for more effective, safer, and less expensive drugs an urgent one. In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, we have screened in-house antiplasmodial libraries against axenic and intracellular forms of Leishmania infantum, Leishmania amazonensis, and Leishmania major. Several of the screened compounds showed half-maximal inhibitory concentrations (IC50s) against intracellular L. infantum parasites in the submicromolar range (compounds 1h, IC50 = 0.9 µM, and 1n, IC50 = 0.7 µM) and selectivity indexes of 11 and 9.7, respectively. Compounds also displayed activity against L. amazonensis and L. major parasites, albeit in the low micromolar range. Mechanistic studies revealed that compound 1n efficiently inhibits oxygen consumption and significantly decreases the mitochondrial membrane potential in L. infantum axenic amastigotes, suggesting that this chemotype acts, at least in part, by interfering with mitochondrial function. Structure-activity analysis suggests that compound 1n is a promising antileishmanial lead and emphasizes the potential of the quinoline-(1H)-imine chemotype for the future development of new antileishmanial agents.


Assuntos
Antiprotozoários , Leishmania mexicana , Leishmaniose , Animais , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Iminas/uso terapêutico , Leishmaniose/tratamento farmacológico , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C
7.
Curr Microbiol ; 78(5): 1846-1855, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33861370

RESUMO

Bovine mastitis is an infectious disease that affects the mammary gland of dairy cattle with considerable economic losses. Staphylococcus aureus is the main microorganism involved in this highly contagious process, and the treatment is only using antibiotics. Currently, the search for new treatment and/or compounds is still in need due to microbial resistance. In this work, we evaluated the potential of eugenol and thymol derivatives against S. aureus strains from bovine mastitis. On that purpose, nine derivatives were synthesized from eugenol and thymol (1-9), and tested against 15 strains of S. aureus from subclinical bovine mastitis. Initially, the strains were evaluated for the biofilm production profile, and those with strong adherence were selected to the antimicrobial sensitivity determination in the Minimum Inhibitory Concentration (MIC) assays. Herein the compounds toxicity was also evaluated by in silico analysis using Osiris DataWarrior® software. The results showed that 60% of the strains were considered strongly adherent and three strains (S. aureus 4271, 4745 and 4746) were selected for the MIC tests. Among the nine eugenol and thymol derivatives tested, four were active against the evaluated strains (MIC = 32 µg mL-1) within CLSI standard values. In silico analysis showed that all derivatives had cLopP < 5, cLogS > - 4 and TPSA < 140 Å2, and similar theoretical toxicity parameters to some antibiotics currently on the market. These molecules also showed negative drug-likeness values, pointing to the originality of these structures and theoretical feasibility on escaping of resistance mechanism and act against resistant strains. Thus, these eugenol derivatives may be considered as promising for the development of new treatments against bovine mastitis and future exploring on this purpose.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Bovinos , Eugenol/farmacologia , Feminino , Mastite Bovina/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Timol/farmacologia
8.
Chembiochem ; 21(14): 1997-2012, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32181548

RESUMO

Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate of 10-6 . All isolates carried mutations in clpP. All mutated S. aureus ClpP proteins characterised in this study were functionally impaired; this increased our understanding of the mode of operation of ClpP. For molecular insights, crystal structures of S. aureus ClpP bound to ADEP4 were determined. Well-resolved N-terminal domains in the apo structure allow the pore-gating mechanism to be followed. The compilation of mutations presented here indicates residues relevant for ClpP function and suggests that ADEP resistance will occur at a lower rate during the infection process.


Assuntos
Antibacterianos/farmacologia , Depsipeptídeos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Endopeptidase Clp/antagonistas & inibidores , Firmicutes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Depsipeptídeos/química , Endopeptidase Clp/metabolismo , Firmicutes/enzimologia , Testes de Sensibilidade Microbiana , Conformação Molecular , Mutação , Staphylococcus aureus/enzimologia
9.
J Bioenerg Biomembr ; 51(4): 277-290, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256283

RESUMO

The P2X7 receptor (P2X7R) is an ion channel which is activated by interactions with the extracellular ATP molecules. The molecular complex P2X7R/ATP induces conformational changes in the protein subunits, opening a pore in the ion channel macromolecular structure. Currently, the P2X7R has been studied as a potential therapeutic target of anti-inflammatory drugs. Based on this, a series of eight boronic acids (NO) analogs were evaluated on the biologic effect of this pharmacophoric group on the human and murine P2X7R. The boronic acids derivatives NO-01 and NO-12 inhibited in vitro human and murine P2X7R function. These analogs compounds showed effect better than compound BBG and similar to inhibitor A740003 for inhibiting dye uptake, in vitro IL-1ß release and ATP-induced paw edema in vivo. In both, in vitro and in vivo assays the compound NO-01 showed to be the hit compound in the present series of the arylboronic acids analogs. The molecular docking suggests that the NO derivatives bind into the upper body domain of the P2X7 pore and that the main intermolecular interaction with the two most active NO derivatives occur with the residues Phe 95, 103 and 293 by hydrophobic interactions and with Leu97, Gln98 and Ser101 by hydrogen bonds.. These results indicate that the boronic acid derivative NO-01 shows the lead compound characteristics to be used as a scaffold structure to the development of new P2X7R inhibitors with anti-inflammatory action.


Assuntos
Anti-Inflamatórios , Ácidos Borônicos , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Receptores Purinérgicos P2X7/genética
10.
J Environ Manage ; 251: 109562, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542618

RESUMO

The feasibility of employing anammox and partial nitritation-anammox (PN/A) processes for nitrogen removal from food waste (FW) digestate was investigated in this study. The effects of different aeration strategies on the microbial community were also investigated. To achieve this, after anammox enrichment (Phase 1), the reactor was fed with digestate supplemented with nitrite (Phase 2), and subsequently different aeration strategies were evaluated to establish PN/A. Aeration strategies with high anoxic periods (30 and 45 min) in relation to aerobic periods (15 min) coupled with low air flow rates (0.026 L  min-1. Lreator-1) were found to be better for establishing PN/A, as coefficients of produced nitrate/removed ammonium were closer to those reported previously (0.17 and 0.21). Aeration conditions considerably altered the microbial community. Candidatus Brocadia was replaced by Candidatus Jettenia, after the first aeration strategies. These results support the feasibility of FW digestate treatment using anammox and PN/A processes and provide a better understanding of the effect of aeration on microbial dynamics in PN/A reactors.


Assuntos
Microbiota , Eliminação de Resíduos , Reatores Biológicos , Desnitrificação , Alimentos , Nitrogênio , Oxirredução
11.
J Biol Chem ; 292(17): 7023-7039, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292930

RESUMO

Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.


Assuntos
Cálcio/metabolismo , Leishmania/metabolismo , Magnésio/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Anisotropia , Cromatografia , Dissulfetos/química , Fluorometria , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luz , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/química , Multimerização Proteica , Espalhamento de Radiação , Temperatura
13.
Microb Pathog ; 118: 105-114, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29550501

RESUMO

The aims of this study were the planning, synthesis and in vitro evaluation of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones against Gram-negative and Gram-positive strains, searching for potential lead compounds against bacterial biofilm formation. A series of 12 new analogs of 2-hydroxy-3-phenylsulfanylmethyl-[1,4]-naphthoquinones were synthesized by adding a thiol and different substituents to a ο-quinone methide using microwave irradiation. The compounds were tested against Gram-positive (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. simulans ATCC 27851, S. epidermidis ATCC 12228 and a hospital Methicillin-resistant S. aureus (MRSA) strain), as well as Gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, P. aeruginosa ATCC 15442, Proteus mirabilis ATCC 15290, Serratia marcescens ATCC 14756, Klebsiella pneumoniae ATCC 4352 and Enterobacter cloacae ATCC 23355) strains, using the disk diffusion method. Ten compounds showed activity mainly against Gram-negative strains with a minimal inhibitory concentration (MIC = 4-64 µg/mL) within the Clinical and Laboratory Standards Institute (CLSI) levels. The biofilm inhibition data showed compounds, 9e, 9f, 9j and 9k, are anti-biofilm molecules when used in sub-MIC concentrations against P. aeruginosa ATCC 15442 strain. Compound (9j) inhibited biofilm formation up to 63.4% with a better profile than ciprofloxacin, which is not able to prevent biofilm formation effectively. The reduction of P. aeruginosa ATCC 15442 mature biofilms was also observed for 9e and 9k. The structure modification applied in the series resulted in 12 new naphthoquinones with antimicrobial activity against Gram-negative bacteria strains (E. coli ATCC 25922, P. aeruginosa ATCC 27853 and ATCC 15442). Four compounds decreased P. aeruginosa biofilm formation effectively.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Naftoquinonas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/toxicidade , Ciprofloxacina/farmacologia , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Teste de Materiais , Testes de Sensibilidade Microbiana , Naftoquinonas/síntese química , Naftoquinonas/química , Naftoquinonas/toxicidade
14.
Exp Parasitol ; 195: 24-33, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30261188

RESUMO

Chagas disease, infecting ca. 8 million people in Central and South America, is mediated by the protozoan parasite, Trypanosoma cruzi. The parasite is transmitted by the bite of blood sucking triatomine insects, such as Rhodnius prolixus, that had previously fed on parasite-infected vertebrate blood and voided their contaminated feces and urine into the wound. The stages of the parasite life cycle in both the insect vector and human host are well-known, but determinants of infection in the insect gut are complex and enigmatic. This paper examines the possible role of the R. prolixus gut agglutinins in the parasite life cycle. The results, derived from gut extracts made from R. prolixus fed on various diets with different vertebrate blood components, and cross adsorption experiments, showed for the first time that R. prolixus has two distinct gut agglutinins originating from their vertebrate blood meal, one for T. cruzi (the parasite agglutinin, PA) and the other for the erythrocytes (the hemagglutinin, HA). Again, uniquely, the results also demonstrate that these two agglutinins are derived, respectively, from the plasma and erythrocyte components of the vertebrate blood. Subsequent experiments, examining in more detail the nature of the plasma components forming the T. cruzi PA, used fractionated extracts of the vertebrate plasma (high density lipoprotein, HDL; low density lipoprotein, LDL, and delipidated plasma) in agglutination assays. The results confirmed the identity of the PA as a high density lipoprotein (HDL) in the plasma of the vertebrate blood meal which agglutinates parasites in the R. prolixus gut. In addition, the use of single or double labeled HDL in fluorescence and confocal microscopy showed the interaction of the labeled HDL with the parasite surface and its internalization at later times. Finally, results of T. cruzi parasitization of R. prolixus, incorporating various vertebrate blood components, resulted in highly significant increases in infectivity in the presence of HDL from the 2nd day of infection, thus confirming the important role of this molecule in T. cruzi infection of R. prolixus.


Assuntos
Doença de Chagas/parasitologia , Insetos Vetores/parasitologia , Lipoproteínas/fisiologia , Rhodnius/parasitologia , Trypanosoma cruzi/fisiologia , Aglutinação , Aglutininas/sangue , Aglutininas/fisiologia , Animais , Doença de Chagas/sangue , Doença de Chagas/transmissão , Galinhas , Eritrócitos/química , Eritrócitos/parasitologia , Hemaglutinação , Cavalos , Humanos , Lipoproteínas/sangue , Coelhos , Ovinos
15.
Proc Natl Acad Sci U S A ; 112(7): E616-24, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646478

RESUMO

Cytosolic eukaryotic 2-Cys-peroxiredoxins have been widely reported to act as dual-function proteins, either detoxifying reactive oxygen species or acting as chaperones to prevent protein aggregation. Several stimuli, including peroxide-mediated sulfinic acid formation at the active site cysteine, have been proposed to trigger the chaperone activity. However, the mechanism underlying this activation and the extent to which the chaperone function is crucial under physiological conditions in vivo remained unknown. Here we demonstrate that in the vector-borne protozoan parasite Leishmania infantum, mitochondrial peroxiredoxin (Prx) exerts intrinsic ATP-independent chaperone activity, protecting a wide variety of different proteins against heat stress-mediated unfolding in vitro and in vivo. Activation of the chaperone function appears to be induced by temperature-mediated restructuring of the reduced decamers, promoting binding of unfolding client proteins in the center of Prx's ringlike structure. Client proteins are maintained in a folding-competent conformation until restoration of nonstress conditions, upon which they are released and transferred to ATP-dependent chaperones for refolding. Interference with client binding impairs parasite infectivity, providing compelling evidence for the in vivo importance of Prx's chaperone function. Our results suggest that reduced Prx provides a mitochondrial chaperone reservoir, which allows L. infantum to deal successfully with protein unfolding conditions during the transition from insect to the mammalian hosts and to generate viable parasites capable of perpetuating infection.


Assuntos
Leishmania infantum/enzimologia , Chaperonas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Animais , Leishmania infantum/patogenicidade , Luciferases/metabolismo , Dobramento de Proteína , Virulência
16.
Arch Virol ; 162(6): 1577-1587, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28213871

RESUMO

Mayaro virus (MAYV) is an arthropod-borne virus and a member of the family Togaviridae, genus Alphavirus. Its infection leads to an acute illness accompanied by long-lasting arthralgia. To date, there are no antiviral drugs or vaccines against infection with MAYV and resources for the prevention or treatment of other alphaviruses are very limited. MAYV has served as a model to study the antiviral potential of several substances on alphavirus replication. In this work we evaluated the antiviral effect of seven new derivatives of thieno[2,3-b]pyridine against MAYV replication in a mammalian cell line. All derivatives were able to reduce viral production effectively at concentrations that were non-toxic for Vero cells. Molecular modeling assays predicted low toxicity risk and good oral bioavailability of the substances in humans. One of the molecules, selected for further study, demonstrated a strong anti-MAYV effect at early stages of replication, as it protected pre-treated cells and also during the late stages, affecting virus morphogenesis. This study is the first to demonstrate the antiviral effect of thienopyridine derivatives on MAYV replication in vitro, suggesting the potential application of these substances as antiviral molecules against alphaviruses. Additional in vivo research will be needed to expand the putative therapeutic applications.


Assuntos
Alphavirus/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Piridinas/farmacologia , Tiofenos/farmacologia , Animais , Chlorocebus aethiops , Humanos , Piridinas/síntese química , Piridinas/química , Piridinas/toxicidade , Tiofenos/síntese química , Tiofenos/química , Tiofenos/toxicidade , Células Vero , Replicação Viral/efeitos dos fármacos
18.
Regul Toxicol Pharmacol ; 91: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28970106

RESUMO

The application of in silico methods is increasing on toxicological risk prediction for human and environmental health. This work aimed to evaluate the performance of three in silico freeware models (OSIRIS v.2.0, LAZAR, and Toxtree) on the prediction of carcinogenicity and mutagenicity of thirty-eight volatile organic compounds (VOC) related to chemical risk assessment for occupational exposure. Theoretical data were compared with assessments available in international databases. Confusion matrices and ROC curves were used to evaluate the sensitivity, specificity, and accuracy of each model. All three models (OSIRIS, LAZAR and Toxtree) were able to identify VOC with a potential carcinogenicity or mutagenicity risk for humans, however presenting differences concerning the specificity, sensitivity, and accuracy. The best predictive performances were found for OSIRIS and LAZAR for carcinogenicity and OSIRIS for mutagenicity, as these softwares presented a combination of negative predictive power and lower risk of false positives (high specificity) for those endpoints. The heterogeneity of results found with different softwares reinforce the importance of using a combination of in silico models to occupational toxicological risk assessment.


Assuntos
Carcinógenos/toxicidade , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Medição de Risco/métodos , Compostos Orgânicos Voláteis/toxicidade , Simulação por Computador , Bases de Dados Factuais , Humanos , Modelos Biológicos , Mutagênese/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Sensibilidade e Especificidade , Software
19.
Mar Drugs ; 15(3)2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28335516

RESUMO

Thrombosis related diseases are among the main causes of death and incapacity in the world. Despite the existence of antithrombotic agents available for therapy, they still present adverse effects like hemorrhagic risks which justify the search for new options. Recently, pachydictyol A, isopachydictyol A, and dichotomanol, three diterpenes isolated from Brazilian marine brown alga Dictyota menstrualis were identified as potent antithrombotic molecules through inhibition of thrombin, a key enzyme of coagulation cascade and a platelet agonist. Due to the biotechnological potential of these marine metabolites, in this work we evaluated their binding mode to thrombin in silico and identified structural features related to the activity in order to characterize their molecular mechanism. According to our theoretical studies including structure-activity relationship and molecular docking analysis, the highest dipole moment, polar surface area, and lowest electronic density of dichotomanol are probably involved in its higher inhibition percentage towards thrombin catalytic activity compared to pachydictyol A and isopachydictyol A. Interestingly, the molecular docking studies also revealed a good shape complementarity of pachydictyol A and isopachydictyol A and interactions with important residues and regions (e.g., H57, S195, W215, G216, and loop-60), which probably justify their thrombin inhibitor effects demonstrated in vitro. Finally, this study explored the structural features and binding mode of these three diterpenes in thrombin which reinforced their potential to be further explored and may help in the design of new antithrombotic agents.


Assuntos
Anticoagulantes/química , Anticoagulantes/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Trombina/antagonistas & inibidores , Organismos Aquáticos/química , Coagulação Sanguínea/efeitos dos fármacos , Brasil , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Phaeophyceae/química , Relação Estrutura-Atividade , Trombose/tratamento farmacológico
20.
Chem Pharm Bull (Tokyo) ; 65(10): 911-919, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966275

RESUMO

Leishmaniasis is a neglected tropical disease caused by protozoan parasites belonging to the genus Leishmania. Currently, the drugs available for treatment of this disease present high toxicity, along with development of parasite resistance. In order to overcome these problems, efforts have been made to search for new and more effective leishmanicidal drugs. The aim of this study was to synthesize and investigate the leishmanicidal effect of N,N'-disubstituted thioureas against Leishmania amazonensis, with evaluation of their in silico pharmacokinetics and toxicity profiles. Our results showed that different thioureas could be obtained in high to moderate yields using simple reaction conditions. Nine thiourea derivatives (3e, 3i, 3k, 3l, 3p, 3q, 3v, 3x and 3z) were active against parasite promastigotes (IC50 21.48-189.10 µM), with low cytotoxicity on mice peritoneal macrophages (CC50>200 µM), except for thiourea 3e (CC50=49.22 µM). After that, the most promising thioureas (3k, 3l, 3p, 3q and 3v) showed IC50 ranging from 70 to 150 µM against L. amazonensis amastigotes in infected macrophages. Except for thiourea 3p, the leishmanicidal activity of the derivatives were independent of nitric oxide (NO) production. Thioureas 3q and 3v affected promastigotes cell cycle without disturbing the mitochondrial membrane potential. Furthermore, our derivatives showed satisfactory theoretical absorption, distribution, metabolism, excretion, toxicity (ADMET) properties. These data indicate that thiourea derivatives are good candidates as leading compounds for the development of new leishmanicidal drugs.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Tioureia/química , Tioureia/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Concentração Inibidora 50 , Macrófagos Peritoneais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Óxido Nítrico/metabolismo , Teoria Quântica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA