Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (200)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37929946

RESUMO

Macrophages represent a crucial line of defense and are responsible for preventing the growth and colonization of pathogens in different tissues. Conidial phagocytosis is a key process that allows for the investigation of the cytoplasmic and molecular events involved in macrophage-pathogen interactions, as well as for the determination of the time of death of internalized conidia. The technique involving the phagocytosis of fungal conidia by macrophages is widely used for studies evaluating the modulation of the immune responses against fungi. The evasion of phagocytosis and escape of phagosomes are mechanisms of fungal virulence. Here, we report the methods that can be used for the analysis of the phagocytosis, clearance, and viability of T. stromaticum conidia, a fungus which is used as a biocontrol and biofertilizer agent and is capable of inducing human infections. The protocol consists of 1) Trichoderma culture, 2) washing to obtain conidia, 3) the isolation of peripheral blood mononuclear cells (PBMCs) using the polysucrose solution method and the differentiation of the PBMCs into macrophages, 4) an in vitro phagocytosis method using round glass coverslips and coloration, and 5) a clearance assay to assess the conidia viability after conidia phagocytosis. In summary, these techniques can be used to measure the fungal clearance efficiency of macrophages.


Assuntos
Leucócitos Mononucleares , Macrófagos , Humanos , Esporos Fúngicos , Fagocitose , Fagossomos , Aspergillus fumigatus
2.
Curr Res Microb Sci ; 3: 100145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909603

RESUMO

Trichoderma spp. are usually considered safe and normally used as biocontrol and biofertilization. Safety for human health is evaluated by several tests that detect various effects such as allergenicity, toxicity, infectivity, and pathogenicity. However, they do not evaluate the effects of the agent upon the immune system. The aim of this study was to investigate the interaction between T. stromaticum spores and mammalian cells to assess the immunomodulatory potential of the spores of this fungus. First, mouse macrophage cell line J774 and human macrophages were exposed to fungal spores and analyzed for structural features, through scanning and transmission electron microscopy. Then, various analysis were performed in human macrophages as to their effect in some functional and molecular aspects of the immune system through immunocytochemistry, flow cytometry and gene expression assays. We demonstrated that T. stromaticum spores induces autophagy and autophagy-related genes (ATGs) and downmodulate inflammatory mediators, including ROS, NLRP3, the cytokines IL-1ß, IL-18, IL-12 and IL-10, as well as TLR2, TLR4, miR-146b and miR-155, which may lead to an augmented susceptibility to pathogens. Our study shows the extension of damages the biofungicide Tricovab® can cause in the innate immune response. Further studies are necessary to elucidate other innate and adaptive immune responses and, consequently, the safety of this fungus when in contact with humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA