Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(43): 14219-32, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25339736

RESUMO

Spines are dendritic protrusions that receive most of the excitatory input in the brain. Early after the onset of cerebral ischemia dendritic spines in the peri-infarct cortex are replaced by areas of focal swelling, and their re-emergence from these varicosities is associated with neurological recovery after acute ischemic stroke (AIS). Urokinase-type plasminogen activator (uPA) is a serine proteinase that plays a central role in tissue remodeling via binding to the urokinase plasminogen activator receptor (uPAR). We report that cerebral cortical neurons release uPA during the recovery phase from ischemic stroke in vivo or hypoxia in vitro. Although uPA does not have an effect on ischemia- or hypoxia-induced neuronal death, genetic deficiency of uPA (uPA(-/-)) or uPAR (uPAR(-/-)) abrogates functional recovery after AIS. Treatment with recombinant uPA after ischemic stroke induces neurological recovery in wild-type and uPA(-/-) but not in uPAR(-/-) mice. Diffusion tensor imaging studies indicate that uPA(-/-) mice have increased water diffusivity and decreased anisotropy associated with impaired dendritic spine recovery and decreased length of distal neurites in the peri-infarct cortex. We found that the excitotoxic injury induces the clustering of uPAR in dendritic varicosities, and that the binding of uPA to uPAR promotes the reorganization of the actin cytoskeleton and re-emergence of dendritic filopodia from uPAR-enriched varicosities. This effect is independent of uPA's proteolytic properties and instead is mediated by Rac-regulated profilin expression and cofilin phosphorylation. Our data indicate that binding of uPA to uPAR promotes dendritic spine recovery and improves functional outcome following AIS.


Assuntos
Isquemia Encefálica/enzimologia , Espinhas Dendríticas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/enzimologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Células Cultivadas , Espinhas Dendríticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia , Doenças do Sistema Nervoso/patologia , Ligação Proteica/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Resultado do Tratamento , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico
2.
Mol Cell Neurosci ; 52: 9-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23063501

RESUMO

The release of the serine proteinase tissue-type plasminogen activator (tPA) from cerebral cortical neurons has a neuroprotective effect in the ischemic brain. Because excitotoxicity is a basic mechanism of ischemia-induced cell death, here we investigated the effect of tPA on excitotoxin-induced neuronal death. We report that genetic overexpression of neuronal tPA or treatment with recombinant tPA renders neurons resistant to the harmful effects of an excitotoxic injury in vitro and in vivo. We found that at concentrations found in the ischemic brain, tPA interacts with synaptic but not extrasynaptic NMDARs. This effect is independent of tPA's proteolytic properties and leads to a rapid and transient phosphorylation of the extracellular signal regulated kinases1/2 (ERK1/2), with ERK1/2-mediated activation of the cAMP response element binding protein (CREB) and induction of the neuroprotective CREB-regulated activating transcription factor 3 (Atf3). In line with these observations, Atf3 down-regulation abrogates the protective effect of tPA against excitotoxin-induced neuronal death. Our data indicate that tPA preferentially activates synaptic NMDARs via a plasminogen-independent mechanism turning on a cell signaling pathway that protects neurons from the deleterious effects of excitotoxicity.


Assuntos
Neurônios/metabolismo , Transdução de Sinais/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Western Blotting , Morte Celular/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/toxicidade , Neurotoxinas/toxicidade , Receptores de N-Metil-D-Aspartato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativador de Plasminogênio Tecidual/farmacologia
3.
J Neurosci ; 32(29): 9848-58, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22815500

RESUMO

The ability to sense and adapt to hypoxic conditions plays a pivotal role in neuronal survival. Hypoxia induces the release of tissue-type plasminogen activator (tPA) from cerebral cortical neurons. We found that the release of neuronal tPA or treatment with recombinant tPA promotes cell survival in cerebral cortical neurons previously exposed to hypoxic conditions in vitro or experimental cerebral ischemia in vivo. Our studies using liquid chromatography and tandem mass spectrometry revealed that tPA activates the mammalian target of rapamycin (mTOR) pathway, which adapts cellular processes to the availability of energy and metabolic resources. We found that mTOR activation leads to accumulation of the hypoxia-inducible factor-1α (HIF-1α) and induction and recruitment to the cell membrane of the HIF-1α-regulated neuronal transporter of glucose GLUT3. Accordingly, in vivo positron emission tomography studies with 18-fluorodeoxyglucose in mice overexpressing tPA in neurons show that neuronal tPA induces the uptake of glucose in the ischemic brain and that this effect is associated with a decrease in the volume of the ischemic lesion and improved neurological outcome following the induction of ischemic stroke. Our data indicate that tPA activates a cell signaling pathway that allows neurons to sense and adapt to oxygen and glucose deprivation.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/efeitos dos fármacos , Fibrinolíticos/farmacologia , Glucose/metabolismo , Neurônios/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA