Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 869019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370973

RESUMO

In adult mammals, neural stem cells are localized in three neurogenic regions, the subventricular zone of the lateral ventricle (SVZ), the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the hypothalamus. In the SVZ and the SGZ, neural stem/progenitor cells (NSPCs) express the glial fibrillary acidic protein (GFAP) and selective depletion of these NSPCs drastically decreases cell proliferation in vitro and in vivo. In the hypothalamus, GFAP is expressed by α-tanycytes, which are specialized radial glia-like cells in the wall of the third ventricle also recognized as NSPCs. To explore the role of these hypothalamic GFAP-positive tanycytes, we used transgenic mice expressing herpes simplex virus thymidine kinase (HSV-Tk) under the control of the mouse Gfap promoter and a 4-week intracerebroventricular infusion of the antiviral agent ganciclovir (GCV) which kills dividing cells expressing Tk. While GCV significantly reduced the number and growth of hypothalamus-derived neurospheres from adult transgenic mice in vitro, it causes hypogonadotropic hypogonadism in vivo. The selective death of dividing tanycytes expressing GFAP indeed results in a marked decrease in testosterone levels and testicular weight, as well as vacuolization of the seminiferous tubules and loss of spermatogenesis. Additionally, GCV-treated GFAP-Tk mice show impaired sexual behavior, but no alteration in food intake or body weight. Our results also show that the selective depletion of GFAP-expressing tanycytes leads to a sharp decrease in the number of gonadotropin-releasing hormone (GnRH)-immunoreactive neurons and a blunted LH secretion. Overall, our data show that GFAP-expressing tanycytes play a central role in the regulation of male reproductive function.


Assuntos
Células Ependimogliais , Proteína Glial Fibrilar Ácida , Hipogonadismo , Animais , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/fisiologia , Hipogonadismo/genética , Hipogonadismo/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Neurogênese/fisiologia , Neurônios/metabolismo
2.
Trends Endocrinol Metab ; 30(11): 833-843, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31699240

RESUMO

Kisspeptin (KP) plays a major role in the regulation of reproduction governed by the hypothalamic-pituitary-gonadal (HPG) axis. However, recent findings suggest that the KP system is present not only centrally (at the level of the hypothalamus), but also in the peripheral organs crucial for the control of metabolism. The KP system is sexually differentiated in the hypothalamus, and it is of particular interest to study whether sex-specific responses to type 2 diabetes (DM2) exist centrally and peripherally. As collection of data is limited in humans, animal models of DM2 are useful to understand crosstalk between metabolism and reproduction. Sex-specific variations in the KP system reported in animals suggest a need for the development of gender specific therapeutic strategies to treat DM2.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Kisspeptinas/metabolismo , Animais , Feminino , Humanos , Hipotálamo/metabolismo , Masculino , Fatores Sexuais , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA