Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 107(7): 5090-5103, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38278295

RESUMO

Thanks to improvements in genetics, nutrition, and management, modern dairy cows can still produce large amounts of milk at the end of lactation, with possible negative effects on health and welfare, particularly when milking is stopped abruptly. To limit yield at dry-off, strategies involving different types of dietary restriction have been used worldwide. Thus, we aimed to investigate the effects of a reduced nutrient density at dry-off on milk production, metabolism, the pattern of rumen fermentation, and milk fatty acid profile around dry-off and in the ensuing periparturient period. During the last week before dry-off, 26 Holstein cows were enrolled in pairs according to the expected calving date and either fed ad libitum ryegrass hay (nutrient restricted, NR; 13 cows) or continued to receive lactation diet (control group, CTR; 13 cows). After dry-off, both groups received only grass hay for 7 d, and free access to water was always provided. Blood, milk, and rumen fluid samples were collected from 7 d before dry-off to 28 DIM. Milk production, DMI (during the periparturient period), and rumination times were recorded daily. At dry-off, NR cows had decreased milk yield (-62%) and milk lactose compared with CTR but had higher fat and protein contents. In the subsequent lactation, no significant differences were observed in milk yield and composition. The BCS did not differ between groups during the transition period, but it decreased in NR after dry-off. Before dry-off, NR had decreased glucose, urea, and insulin, but higher creatinine, BHB, and nonesterified fatty acids (NEFA). The day after dry-off, NEFA were lower in NR, but they were higher 7 d after calving. At dry-off, NR had higher rumen pH, lower lactate, urea, and total volatile fatty acid concentrations. Considering volatile fatty acid molar proportions, NR had increased acetate but decreased propionate and butyrate at dry-off. Rumination time dropped 6 d before dry-off in NR and after dry-off in CTR, but no differences were observed in the periparturient period. Milk fatty acid profile revealed a remarkably lower proportion of short-chain fatty acids in NR at dry-off and a higher proportion of medium- and long-chain ones. These results confirmed that decreasing nutrient density reduce milk yield before dry-off. However, metabolism around dry-off was significantly affected, as suggested by plasma, rumen fluid, and milk analyses. Further research is required to investigate the impact of the metabolic effects on the inflammatory response, liver function, and immune system, particularly concerning the mammary gland.


Assuntos
Dieta , Lactação , Leite , Rúmen , Animais , Feminino , Bovinos , Leite/química , Leite/metabolismo , Dieta/veterinária , Rúmen/metabolismo , Ração Animal , Nutrientes/metabolismo
2.
J Dairy Sci ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945260

RESUMO

Breeding animals able to effectively respond to stress could be a long-term, sustainable, and affordable strategy to improve resilience and welfare in livestock systems. In the present study, the concentrations of 29 plasma biomarkers were used as candidate endophenotypes for metabolic stress response in single-SNP, gene- and haplotype-based GWAS using 739 healthy lactating Italian Holstein cows and 88,271 variants. Significant genetic associations were found in all the 3 GWAS approaches for plasma γ-glutamyl transferase concentration on BTA17, for paraoxonase on BTA4, and for alkaline phosphatase and zinc on BTA2. On these chromosomes, single-SNP and gene-based chromosome-wide association studies were performed, confirming GWAS findings. The signals identified for paraoxonase, γ-glutamyl transferase, and alkaline phosphatase were in proximity of the genes coding for them. The heritability of these 4 biomarkers ranged from moderate to high (from 0.39 to 0.54). Plasma biomarkers are known to undergo large changes in concentration during metabolic stress in the transition period, with an inter-individual variability in the rate of change and recovery time. Genetics may account in part for these differences. To assess this, we studied a subset of 139 periparturient cows homozygous at 3 SNPs known to be respectively associated with concentration of plasma ceruloplasmin, paraoxonase and γ-glutamyl transferase. We compared the immune-metabolic profile measured in plasma at -7, +5 and +30 d relative to calving between groups of opposite homozygotes. A significant effect of the genotype was found on paraoxonase and γ-glutamyl transferase plasma concentration at all the 3 time points. No evidence for genotype effect was detected for ceruloplasmin. Understanding the genetic control underlying metabolic stress response may suggest new approaches to foster resilience in dairy cows.

3.
Sci Rep ; 14(1): 13138, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849509

RESUMO

Colorectal cancer (CRC) is a global health concern, and the incidence of early onset (EO) CRC, has an upward trend. This study delves into the genomic landscape of EO-CRC, specifically focusing on pediatric (PED) and young adult (YA) patients, comparing them with adult (AD) CRC. In this retrospective monocentric investigation, we performed targeted next-generation sequencing to compare the mutational profile of 38 EO-CRCs patients (eight PED and 30 YA) to those of a 'control group' consisting of 56 AD-CRCs. Our findings reveal distinct molecular profiles in EO-CRC, notably in the WNT and PI3K-AKT pathways. In pediatrics, we observed a significantly higher frequency of RNF43 mutations, whereas APC mutations were more prevalent in adult cases. These observations suggest age-related differences in the activation of the WNT pathway. Pathway and copy number variation analysis reveal that AD-CRC and YA-CRC have more similarities than the pediatric patients. PED shows a peculiar profile with CDK6 amplification and the enrichment of lysine degradation pathway. These findings may open doors for personalized therapies, such as PI3K-AKT pathway inhibitors or CDK6 inhibitors for pediatric patients. Additionally, the distinct molecular signatures of EO-CRC underscore the need for age-specific treatment strategies and precision medicine. This study emphasizes the importance of comprehensive molecular investigations in EO-CRCs, which can potentially improve diagnostic accuracy, prognosis, and therapeutic decisions for these patients. Collaboration between the pediatric and adult oncology community is fundamental to improve oncological outcomes for this rare and challenging pediatric tumor.


Assuntos
Neoplasias Colorretais , Mutação , Humanos , Neoplasias Colorretais/genética , Masculino , Feminino , Criança , Adulto Jovem , Adolescente , Adulto , Estudos Retrospectivos , Pré-Escolar , Variações do Número de Cópias de DNA , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA