RESUMO
BACKGROUND: In recent years, the mitochondria/immune system interaction has been proposed, so that variants of mitochondrial genome and levels of heteroplasmy might deregulate important metabolic processes in fighting infections, such as leprosy. METHODS: We sequenced the whole mitochondrial genome to investigate variants and heteroplasmy levels, considering patients with different clinical forms of leprosy and household contacts. After sequencing, a specific pipeline was used for preparation and bioinformatics analysis to select heteroplasmic variants. RESULTS: We found 116 variants in at least two of the subtypes of the case group (Borderline Tuberculoid, Borderline Lepromatous, Lepromatous), suggesting a possible clinical significance to these variants. Notably, 15 variants were exclusively found in these three clinical forms, of which five variants stand out for being missense (m.3791T > C in MT-ND1, m.5317C > A in MT-ND2, m.8545G > A in MT-ATP8, m.9044T > C in MT-ATP6 and m.15837T > C in MT-CYB). In addition, we found 26 variants shared only by leprosy poles, of which two are characterized as missense (m.4248T > C in MT-ND1 and m.8027G > A in MT-CO2). CONCLUSION: We found a significant number of variants and heteroplasmy levels in the leprosy patients from our cohort, as well as six genes that may influence leprosy susceptibility, suggesting for the first time that the mitogenome might be involved with the leprosy process, distinction of clinical forms and severity. Thus, future studies are needed to help understand the genetic consequences of these variants.
Assuntos
Genoma Mitocondrial , Hanseníase , Humanos , Heteroplasmia , Genoma Mitocondrial/genética , Hanseníase/genética , Mitocôndrias/genéticaRESUMO
Type 1 Diabetes Mellitus (T1DM) can generate severe complications, such as Diabetic Kidney Disease (DKD) or Diabetic Nephropathy (DN), with it emerging as the leading cause of terminal (end-stage) renal disease all over the world. For T1DM, the clinical evaluation of DKD uses markers like the Glomerular Filtration Rate (GFR) and the Urinary Albumin Excretion (UAE). However, early diagnosis of DKD is still a challenge. For this reason, investigating molecular markers, such as microRNAs (miRNAs), offers a promising perspective to an early diagnosis, highlighting the stability and the ability to reflect incipient molecular manifestations. Thus, here we investigated four miRNAs (hsa-let-7i-5p, hsa-miR-143-3p, hsa-miR-501-3p, and hsa-miR-100-5p) regarding nephropathy in patients with T1DM, considering the albuminuria (micro and macro) as a standard to evaluate the groups. As a result, we found a reduced expression of miR-100-5p in patients with MIC, indicating a protective role in nephropathy. Beyond that, expression levels between the groups (Non vs. UAE) were not significant when comparing the miRNAs miR-501-3p and miR-143-3p. Finally, miR-143-3p and miR-100-5p were linked to some target genes such as AKT1, MMP13, and IGF1R, that are connected to signal pathways and cellular metabolism.
Assuntos
Biomarcadores , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , MicroRNAs , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Albuminúria/genética , Biomarcadores/análise , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Regulação para Baixo/genética , Taxa de Filtração Glomerular , MicroRNAs/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismoRESUMO
Breast cancer (BC) is the type of neoplasm that most affects women worldwide. It is known that one of the hallmarks of cancer is the resistance to cell death with the evasion of apoptosis. Considering the relevance of TP53, BCL2, CASP3, and CASP9 genes for the occurrence of the intrinsic apoptosis, this study investigated the distribution of the genetic variants rs17880560 (TP53), rs11269260 (BCL2), rs4647655 (CASP3), rs4645982, and rs61079693 (CASP9), as well as genetic ancestry and clinical data, in a BC cohort from the Brazilian Amazon that other variants in these genes might play a role in this process. In the present study, 22 breast cancer tissues and 10 non-cancerous tissues were used, therefore, 32 samples from different patients were subjected to genotyping. We observed that breastfeeding and cancer history were factors that need to be considered for BC (p = 0.022). Therefore, this study contributed to a greater understanding of intrinsic apoptosis in BC, reinforcing previous data that suggest that the history of cancer might be a condition that affects the development of BC and that breastfeeding may act as a protective factor for this type of cancer. We recommend more studies on the genetic factors investigated here, aiming at a future with tools that can help in the early diagnosis.
RESUMO
BACKGROUND: In malaria infection, apoptosis acts as an important immunomodulatory mechanism that leads to the elimination of parasitized cells, thus reducing the parasite density and controlling immune cell populations. Here, it was investigated the association of INDEL variants in apoptotic genes-rs10562972 (FAS), rs4197 (FADD), rs3834129 and rs59308963 (CASP8), rs61079693 (CASP9), rs4647655 (CASP3), rs11269260 (BCL-2), and rs17880560 (TP53)-and the influence of genetic ancestry with susceptibility to malaria and parasite density in an admixed population from the Brazilian Amazon. METHODS: Total DNA was extracted from 126 malaria patients and 101 uninfected individuals for investigation of genetic ancestries and genotypic distribution of apoptosis-related variants by Multiplex PCR. Association analyses consisted of multivariate logistic regressions, considering the following comparisons: (i) DEL/DEL genotype vs. INS/DEL + INS/INS; and (ii) INS/INS vs. INS/DEL + DEL/DEL. RESULTS: Individuals infected by Plasmodium falciparum had significantly higher African ancestry proportions in comparison to uninfected controls, Plasmodium vivax, and mixed infections. The INS/INS genotype of rs3834129 (CASP8) seemed to increase the risk for P. falciparum infection (P = 0.038; OR = 1.867; 95% CI 0.736-3.725), while the DEL/DEL genotype presented a significant protective effect against infection by P. falciparum (P = 0.049; OR = 0.446; 95% CI 0.185-0.944) and mixed infection (P = 0.026; OR = 0.545; 95% CI 0.281-0.996), and was associated with lower parasite density in P. falciparum malaria (P = 0.009; OR = 0.383; 95% CI 0.113-1.295). Additionally, the INS/INS genotype of rs10562972 (FAS) was more frequent among individuals infected with P. vivax compared to P. falciparum (P = 0.036; OR = 2.493; 95% CI 1.104-4.551), and the DEL/DEL genotype of rs17880560 (TP53) was significantly more present in patients with mono-infection by P. vivax than in individuals with mixed infection (P = 0.029; OR = 0.667; 95% CI 0.211-1.669). CONCLUSIONS: In conclusion, variants in apoptosis genes are associated with malaria susceptibility and parasite density, indicating the role of apoptosis-related genetic profiles in immune responses against malaria infection.
Assuntos
Coinfecção , Malária Falciparum , Malária Vivax , Parasitos , Humanos , Animais , Predisposição Genética para Doença , Brasil , Estudos de Casos e Controles , Apoptose/genética , Malária Vivax/genética , Malária Falciparum/genética , Plasmodium vivax/genética , Plasmodium falciparum/genéticaRESUMO
Cancer is a multifactorial group of diseases, being highly incident and one of the leading causes of death worldwide. In Brazil, there is a great variation in cancer incidence and impact among the different geographic regions, partly due to the genetic heterogeneity of the population in this country, composed mainly by European (EUR), Native American (NAM), African (AFR), and Asian (ASN) ancestries. Among different populations, genetic markers commonly present diverse allelic frequencies, but in admixed populations, such as the Brazilian population, data is still limited, which is an issue that might influence cancer incidence. Therefore, we analyzed the allelic and genotypic distribution of 12 INDEL polymorphisms of interest in populations from the five Brazilian geographic regions and in populations representing EUR, NAM, AFR, and ASN, as well as tissue expression in silico. Genotypes were obtained by multiplex PCR and the statistical analyses were done using R, while data of tissue expression for each marker was extracted from GTEx portal. We highlight that all analyzed markers presented statistical differences in at least one of the population comparisons, and that we found 39 tissues to be differentially expressed depending on the genotype. Here, we point out the differences in genotype distribution and gene expression of potential biomarkers for risk of cancer development and we reinforce the importance of this type of study in populations with different genetic backgrounds.
RESUMO
In humans, mitochondria play key roles in the regulation of cellular functions, such as the regulation of the innate immune response and are targets of several pathogenic viruses and bacteria. Mycobacteria are intracellular pathogens that infect cells important to the immune system of organisms and target mitochondria to meet their energy demands. In this review, we discuss the main mechanisms by which mitochondria regulate the innate immune response of humans to mycobacterial infection, especially those that cause tuberculosis and leprosy. Notably, the importance of mitochondrial haplogroups and ancestry studies for mycobacterial diseases is also discussed.
Assuntos
Hanseníase , Mycobacterium , Tuberculose , Humanos , Sistema Imunitário , Hanseníase/genética , Mitocôndrias/genética , Mycobacterium/genética , Mycobacterium leprae , Tuberculose/genética , Tuberculose/microbiologiaRESUMO
BACKGROUND: Parkinson's disease (PD) is currently the second most common neurodegenerative disorder, burdening about 10 million elderly individuals worldwide. The multifactorial nature of PD poses a difficult obstacle for understanding the mechanisms involved in its onset and progression. Currently, diagnosis depends on the appearance of clinical signs, some of which are shared among various neurologic disorders, hindering early diagnosis. There are no effective tools to prevent PD onset, detect the disease in early stages or accurately report the risk of disease progression. Hence, there is an increasing demand for biomarkers that may identify disease onset and progression, as treatment-based medicine may not be the best approach for PD. Over the last few decades, the search for molecular markers to predict susceptibility, aid in accurate diagnosis and evaluate the progress of PD have intensified, but strategies aimed to improve individualized patient care have not yet been established. CONCLUSIONS: Genomic variation, regulation by epigenomic mechanisms, as well as the influence of the host gut microbiome seem to have a crucial role in the onset and progress of PD, thus are considered potential biomarkers. As such, the human nuclear and mitochondrial genome, epigenome, and the host gut microbiome might be the key elements to the rise of personalized medicine for PD patients.
Assuntos
Epigenoma , Microbioma Gastrointestinal , Genoma Humano , Genoma Mitocondrial , Doença de Parkinson , Biomarcadores/metabolismo , Variação Genética , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologiaRESUMO
Mitochondria are organelles responsible for several functions involved in cellular balance, including energy generation and apoptosis. For decades now, it has been well-known that mitochondria have their own genetic material (mitochondrial DNA), which is different from nuclear DNA in many ways. More recently, studies indicated that, much like nuclear DNA, mitochondrial DNA is regulated by epigenetic factors, particularly DNA methylation and non-coding RNAs (ncRNAs). This field is now called mitoepigenetics. Additionally, it has also been established that nucleus and mitochondria are constantly communicating to each other to regulate different cellular pathways. However, little is known about the mechanisms underlying mitoepigenetics and nuclei-mitochondria communication, and also about the involvement of the ncRNAs in mitochondrial functions and related diseases. In this context, this review presents the state-of-the-art knowledge, focusing on ncRNAs as new players in mitoepigenetic regulation and discussing future perspectives of these fields.
Assuntos
Núcleo Celular/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Mitocôndrias/genética , RNA não Traduzido/genética , Animais , HumanosRESUMO
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Assuntos
Apoptose , Fenômenos Fisiológicos Celulares , Animais , Biomarcadores , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Biologia Molecular , Receptores de Morte Celular/genética , Receptores de Morte Celular/metabolismo , Transdução de SinaisRESUMO
Among the myriad of neurodegenerative diseases, mitochondrial dysfunction represents a nexus regarding their pathogenic processes, in which Parkinson's disease (PD) is notable for inherent vulnerability of the dopaminergic pathway to energy deficits and oxidative stress. Underlying this dysfunction, the occurrence of defects in complex I (CI) derived from molecular alterations in its subunits has been described in the literature. However, the mechanistic understanding of the processes mediating the occurrence of mitochondrial dysfunction mediated by CI deficiency in PD remains uncertain and subject to some inconsistencies. Therefore, this review analyzed existing evidence that may explain the relationship between molecular alterations in the core subunits of CI, recognized for their direct contribution to its enzymatic performance, and the pathogenesis of PD. As a result, we discussed 47 genetic variants in the 14 core subunits of CI, which, despite some discordant results, were predominantly associated with varying degrees of deficiency in complex enzymatic activity, as well as defects in supercomplex biogenesis and CI itself. Finally, we hypothesized about the relationship of the described alterations with the pathogenesis of PD and offered some suggestions that may aid in the design of future studies aimed at elucidating the relationship between such alterations and PD.
RESUMO
Leprosy is a chronic bacterial infection mainly caused by Mycobacterium leprae that primarily affects skin and peripheral nerves. Due to its ability to absorb carbon from the host cell, the bacillus became dependent on energy production, mainly through oxidative phosphorylation. In fact, variations in genes of Complex I of oxidative phosphorylation encoded by mtDNA have been associated with several diseases in humans, including bacterial infections, which are possible influencers in the host response to leprosy. Here, we investigated the presence of variants in the mtDNA genes encoding Complex I regarding leprosy, as well as the analysis of their pathogenicity in the studied cohort. We found an association of 74 mitochondrial variants with either of the polar forms, Pole T (Borderline Tuberculoid) or Pole L (Borderline Lepromatous and Lepromatous) of leprosy. Notably, six variants were exclusively found in both clinical poles of leprosy, including m.4158A>G and m.4248T>C in MT-ND1, m.13650C>A, m.13674T>C, m.12705C>T and m.13263A>G in MT-ND5, of which there are no previous reports in the global literature. Our observations reveal a substantial number of mutations among different groups of leprosy, highlighting a diverse range of consequences associated with mutations in genes across these groups. Furthermore, we suggest that the six specific variants exclusively identified in the case group could potentially play a crucial role in leprosy susceptibility and its clinical differentiation. These variants are believed to contribute to the instability and dysregulation of oxidative phosphorylation during the infection, further emphasizing their significance.
Assuntos
Hanseníase , Humanos , Hanseníase/genética , Mycobacterium leprae/genética , Pele , DNA Mitocondrial , Antígenos de BactériasRESUMO
Levodopa-induced dyskinesia (LID) refers to involuntary motor movements of chronic use of levodopa in Parkinson's disease (PD) that negatively impact the overall well-being of people with this disease. The molecular mechanisms involved in LID were investigated through whole-blood transcriptomic analysis for differential gene expression and identification of new co-expression and differential co-expression networks. We found six differentially expressed genes in patients with LID, and 13 in patients without LID. We also identified 12 co-expressed genes exclusive to LID, and six exclusive hub genes involved in 23 gene-gene interactions in patients with LID. Convergently, we identified novel genes associated with PD and LID that play roles in mitochondrial dysfunction, dysregulation of lipid metabolism, and neuroinflammation. We observed significant changes in disease progression, consistent with previous findings of maladaptive plastic changes in the basal ganglia leading to the development of LID, including a chronic pro-inflammatory state in the brain.
RESUMO
Although it has gained more attention in recent years, the relationship between breast cancer (BC) and mitochondrial oxidative phosphorylation (OXPHOS) is still not well understood. Importantly, Complex IV or Cytochrome C Oxidase (COX) of OXPHOS is one of the key players in mitochondrial balance. An in silico investigation of mutations in structural genes of Complex IV was conducted in BC, comprising 2107 samples. Our findings show four variants (rs267606614, rs753969142, rs199476128 and rs267606884) with significant pathogenic potential. Moreover, we highlight nine genes (MT-CO1, MT-CO2, MT-CO3, CO4I2, COX5A, COX5B, COX6A2, COX6C and COX7B2) with a potential impact on BC.
Assuntos
Neoplasias da Mama , Complexo IV da Cadeia de Transporte de Elétrons , Humanos , Feminino , Complexo IV da Cadeia de Transporte de Elétrons/genética , Neoplasias da Mama/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Genes MitocondriaisRESUMO
Mitophagy is an important process that participates in mitochondrial quality control. Dysfunctions in this process can be caused by mutations in genes like PRKN and are associated with the development and progression of Parkinson's Disease (PD). The most used drug in the treatment of PD is levodopa (LD), but it can cause adverse effects, such as dyskinesia. Currently, few studies are searching for biomarkers for an effective use of lLD for this disease, especially regarding mitophagy genetics. Thus, this work investigates the association of 14 variants of the PRKN gene with LD in the treatment of PD. We recruited 70 patients with PD undergoing treatment with LD (39 without dyskinesia and 31 with dyskinesia). Genotyping was based on Sanger sequencing. Our results reinforce that age at onset of symptoms, duration of PD, and treatment and dosage of LD can influence the occurrence of dyskinesia but not the investigated PRKN variants. The perspective presented here of variants of mitophagy-related genes in the context of treatment with LD is still underexplored, although an association has been indicated in previous studies. We suggest that other variants in PRKN or in other mitophagy genes may participate in the development of levodopa-induced dyskinesia in PD treatment.
RESUMO
BACKGROUND: Mitochondrial participation in tumorigenesis and metastasis has been studied for many years, but several aspects of this mechanism remain unclear, such as the association of mitochondrial DNA (mtDNA) with different cancers. Here, based on two independent datasets, we modelled an mtDNA mutation-cancer network by systematic integrative analysis including 37 cancer types to identify the mitochondrial variants found in common among them. RESULTS: Our network showed mtDNA associations between gastric cancer and other cancer types, particularly kidney, liver, and prostate cancers, which is suggestive of a potential role of such variants in the metastatic processes among these cancer types. A graph-based interactive web tool was made available at www2.lghm.ufpa.br/mtdna. We also highlighted that most shared variants were in the MT-ND4, MT-ND5 and D-loop, and that some of these variants were nonsynonymous, indicating a special importance of these variants and regions regarding cancer progression, involving genomic and epigenomic alterations. CONCLUSIONS: This study reinforces the importance of studying mtDNA in cancer and offers new perspectives on the potential involvement of different mitochondrial variants in cancer development and metastasis.
Assuntos
DNA Mitocondrial , Neoplasias Gástricas , DNA Mitocondrial/genética , Humanos , Masculino , Mitocôndrias/genética , Processos NeoplásicosRESUMO
Vitamin D has been considered a strong contributing factor to type 1 diabetes mellitus (T1DM). Many studies have investigated polymorphisms in the VDR gene in association with T1DM in different populations, but there are still conflicting findings. This study aimed to evaluate the association of four variants in the VDR gene (rs7975232, rs1544410, rs731236, and rs2228570) with T1DM risk and vitamin D levels within a population from North Region, Brazil, as well as the influence of genomic ancestry on T1DM. A total of 65 T1DM patients and 83 non-T1DM patients were enrolled in this study. VDR gene polymorphisms were assessed using Sanger sequencing analysis. Genomic ancestry was analyzed using a set of 61 ancestry-informative markers. T1DM patients showed higher European genomic contribution and lower Native American genomic contribution when compared to non-T1DM patients. T1DM patients with AA genotype in rs1544410 or CC genotype in rs731236 had significantly lower 25(OH)D levels compared to the other two genotypes (p = 0.013 and p = 0.02, respectively), while T1DM with TT genotype in rs2228570 had higher 25(OH)D levels compared to CC + TC in the same polymorphism (p = 0.011). Our findings suggest that the association between 25(OH)D and T1DM may be modified by VDR variants, possibly influencing the development of this autoimmune disease.
Assuntos
Diabetes Mellitus Tipo 1 , Brasil , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Humanos , Receptores de Calcitriol/genética , Vitamina D/análogos & derivadosRESUMO
Hereditary gastric cancers (HGCs) are supposed to be rare and difficult to identify. Nonetheless, many cases of young patients with gastric cancer (GC) fulfill the clinical criteria for considering this diagnosis but do not present the defined pathogenic mutations necessary to meet a formal diagnosis of HGC. Moreover, GC in young people is a challenging medical situation due to the usual aggressiveness of such cases and the potential risk for their relatives when related to a germline variant. Aiming to identify additional germline alterations that might contribute to the early onset of GC, a complete exome sequence of blood samples from 95 GC patients under 50 and 94 blood samples from non-cancer patients was performed and compared in this study. The number of identified germline mutations in GC patients was found to be much higher than that from individuals without a cancer diagnosis. Specifically, the number of high functional impact mutations, including those affecting genes involved in medical diseases, cancer hallmark genes, and DNA replication and repair processes, was much higher, strengthening the hypothesis of the potential causal role of such mutations in hereditary cancers. Conversely, classically related HGC mutations were not found and the number of mutations in genes in the CDH1 pathway was not found to be relevant among the young GC patients, reinforcing the hypothesis that existing alternative germline contributions favor the early onset of GC. The LILRB1 gene variants, absent in the world's cancer datasets but present in high frequencies among the studied GC patients, may represent essential cancer variants specific to the Amerindian ancestry's contributions. Identifying non-reported GC variants, potentially originating from under-studied populations, may pave the way for additional discoveries and translations to clinical interventions for GC management. The newly proposed approaches may reduce the discrepancy between clinically suspected and molecularly proven hereditary GC and shed light on similar inconsistencies among other cancer types. Additionally, the results of this study may support the development of new blood tests for evaluating cancer risk that can be used in clinical practice, helping physicians make decisions about strategies for surveillance and risk-reduction interventions.
RESUMO
Background: Considering the potential role of miRNAs as biomarkers and their interaction with both nuclear and mitochondrial genes, we investigated the miRNA expression profile in type 1 diabetes (T1DM) patients, including the pathways in which they are involved considering both nuclear and mitochondrial functions. Methods: We analyzed samples of T1DM patients and control individuals (normal glucose tolerance) by high throughput miRNA sequencing (miRNome). Next, five miRNAs - hsa-miR-26b-5p, hsa-let-7i-5p, hsa-miR-143-3p, hsa-miR-501-3p and hsa-miR-100-5p - were validated by RT-qPCR. The identification of target genes was extracted from miRTarBase and mitoXplorer database. We also performed receiver operating characteristic (ROC) curves and miRNAs that had an AUC > 0.85 were considered potential biomarkers. Results: Overall, 41 miRNAs were differentially expressed in T1DM patients compared to control. Hsa-miR-21-5p had the highest number of predicted target genes and was associated with several pathways, including insulin signaling and apoptosis. 34.1% (14/41) of the differentially expressed miRNAs also targeted mitochondrial genes, and 80.5% (33/41) of them targeted nuclear genes involved in the mitochondrial metabolism. All five validated miRNAs were upregulated in T1DM. Among them, hsa-miR-26b-5p showed AUC>0.85, being suggested as potential biomarker to T1DM. Conclusion: Our results demonstrated 41 DE miRNAs that had a great accuracy in discriminating T1DM and control group. Furthermore, we demonstrate the influence of these miRNAs on numerous metabolic pathways, including mitochondrial metabolism. Hsa-miR-26b-5p and hsa-miR-21-5p were highlighted in our results, possibly acting on nuclear and mitochondrial dysfunction and, subsequently, T1DM dysregulation.
Assuntos
Diabetes Mellitus Tipo 1 , MicroRNAs , Humanos , Diabetes Mellitus Tipo 1/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mitocôndrias/genética , Mitocôndrias/metabolismo , BiomarcadoresRESUMO
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Assuntos
Malária/patologia , Transdução de Sinais , Animais , Morte Celular , Humanos , Imunidade , Malária/imunologia , Modelos Biológicos , PiroptoseRESUMO
Shifts in subsistence strategy among Native American people of the Amazon may be the cause of typically western diseases previously linked to modifications of gut microbial communities. Here, we used 16S ribosomal RNA sequencing to characterise the gut microbiome of 114 rural individuals, namely Xikrin, Suruí and Tupaiú, and urban individuals from Belém city, in the Brazilian Amazon. Our findings show the degree of potential urbanisation occurring in the gut microbiome of rural Amazonian communities characterised by the gradual loss and substitution of taxa associated with rural lifestyles, such as Treponema. Comparisons to worldwide populations indicated that Native American groups are similar to South American agricultural societies and urban groups are comparable to African urban and semi-urban populations. The transitioning profile observed among traditional populations is concerning in light of increasingly urban lifestyles. Lastly, we propose the term "tropical urban" to classify the microbiome of urban populations living in tropical zones.