Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Immunol ; 14(9): 908-16, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872678

RESUMO

Human T cells that express a T cell antigen receptor (TCR) containing γ-chain variable region 9 and δ-chain variable region 2 (Vγ9Vδ2) recognize phosphorylated prenyl metabolites as antigens in the presence of antigen-presenting cells but independently of major histocompatibility complex (MHC), the MHC class I-related molecule MR1 and antigen-presenting CD1 molecules. Here we used genetic approaches to identify the molecule that binds and presents phosphorylated antigens. We found that the butyrophilin BTN3A1 bound phosphorylated antigens with low affinity, at a stoichiometry of 1:1, and stimulated mouse T cells with transgenic expression of a human Vγ9Vδ2 TCR. The structures of the BTN3A1 distal domain in complex with host- or microbe-derived phosphorylated antigens had an immunoglobulin-like fold in which the antigens bound in a shallow pocket. Soluble Vγ9Vδ2 TCR interacted specifically with BTN3A1-antigen complexes. Accordingly, BTN3A1 represents an antigen-presenting molecule required for the activation of Vγ9Vδ2 T cells.


Assuntos
Antígenos CD/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD/química , Antígenos CD/genética , Butirofilinas , Cromossomos Humanos Par 6 , Humanos , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Organofosfatos/química , Organofosfatos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
2.
Nat Immunol ; 13(5): 474-80, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426352

RESUMO

The development and maturation of semi-invariant natural killer T cells (iNKT cells) rely on the recognition of self antigens presented by CD1d restriction molecules in thymus. The nature of the stimulatory thymic self lipids remains elusive. We isolated lipids from thymocytes and found that ether-bonded mono-alkyl glycerophosphates and the precursors and degradation products of plasmalogens stimulated iNKT cells. Synthetic analogs showed high potency in activating thymic and peripheral iNKT cells. Mice deficient in the peroxisomal enzyme glyceronephosphate O-acyltransferase (GNPAT), essential for the synthesis of ether lipids, had significant alteration of the thymic maturation of iNKT cells and fewer iNKT cells in both thymus and peripheral organs, which confirmed the role of ether-bonded lipids as iNKT cell antigens. Thus, peroxisome-derived lipids are nonredundant self antigens required for the generation of a full iNKT cell repertoire.


Assuntos
Lipídeos/imunologia , Células T Matadoras Naturais/imunologia , Peroxissomos/imunologia , Timócitos/imunologia , Timo/imunologia , Animais , Antígenos CD/metabolismo , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Interleucina-4/metabolismo , Lectinas Tipo C/metabolismo , Lipídeos/isolamento & purificação , Lisofosfolipídeos/imunologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Peroxissomos/química , Fosfatidiletanolaminas/imunologia , Fosfatidiletanolaminas/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Timo/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33563755

RESUMO

CD20 is a B cell-specific membrane protein and represents an attractive target for therapeutic antibodies. Despite widespread usage of anti-CD20 antibodies for B cell depletion therapies, the biological function of their target remains unclear. Here, we demonstrate that CD20 controls the nanoscale organization of receptors on the surface of resting B lymphocytes. CRISPR/Cas9-mediated ablation of CD20 in resting B cells resulted in relocalization and interaction of the IgM-class B cell antigen receptor with the coreceptor CD19. This receptor rearrangement led to a transient activation of B cells, accompanied by the internalization of many B cell surface marker proteins. Reexpression of CD20 restored the expression of the B cell surface proteins and the resting state of Ramos B cells. Similarly, treatment of Ramos or naive human B cells with the anti-CD20 antibody rituximab induced nanoscale receptor rearrangements and transient B cell activation in vitro and in vivo. A departure from the resting B cell state followed by the loss of B cell identity of CD20-deficient Ramos B cells was accompanied by a PAX5 to BLIMP-1 transcriptional switch, metabolic reprogramming toward oxidative phosphorylation, and a shift toward plasma cell development. Thus, anti-CD20 engagement or the loss of CD20 disrupts membrane organization, profoundly altering the fate of human B cells.


Assuntos
Antígenos CD20/metabolismo , Linfócitos B/imunologia , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Ativação Linfocitária , Receptores de Antígenos de Linfócitos B/metabolismo
4.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766036

RESUMO

Detecting volatile organic compounds is a fundamental step in water quality analysis. Methylisoborneol (MIB) provides a lousy odor to water, whereas geosmin (GEO) is responsible for its sour taste. A widely-used technique for their detection is gas-phase chromatography. On the other hand, an electronic nose from organic thin-film transistors is a cheaper and faster alternative. Poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) features semiconducting properties suitable for organic electronics. However, in order to expose the active layer in a bottom-gate transistor structure with photolithographically patterned electrodes, a cross-linked dielectric such as poly(4-vinyl phenol) (PVP) is necessary. In this work, the cross-linking was demonstrated using FTIR and Raman spectroscopies, as well as high-k capacitors with a dielectric constant of 5.3. The presence of enhanced crystallinity with terrace formation in the semiconducting film was confirmed with UV-visible spectrophotometry, atomic force microscopy, and X-ray diffraction. Finally, for the first time, a PBTTT-C14 transistor on cross-linked PVP was shown to respond to isoborneol with a sensitivity of up to 6% change in mobility per ppm. Due to its similarity to MIB, a system comprising these sensors must be investigated in the future as a tool for sanitation companies in real-time water quality monitoring.

5.
EMBO J ; 37(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669863

RESUMO

Expression of the B-cell antigen receptor (BCR) is essential not only for the development but also for the maintenance of mature B cells. Similarly, many B-cell lymphomas, including Burkitt lymphoma (BL), require continuous BCR signaling for their tumor growth. This growth is driven by immunoreceptor tyrosine-based activation motif (ITAM) and PI3 kinase (PI3K) signaling. Here, we employ CRISPR/Cas9 to delete BCR and B-cell co-receptor genes in the human BL cell line Ramos. We find that Ramos B cells require the expression of the BCR signaling component Igß (CD79b), and the co-receptor CD19, for their fitness and competitive growth in culture. Furthermore, we show that in the absence of any other BCR component, Igß can be expressed on the B-cell surface, where it is found in close proximity to CD19 and signals in an ITAM-dependent manner. These data suggest that Igß and CD19 are part of an alternative B-cell signaling module that use continuous ITAM/PI3K signaling to promote the survival of B lymphoma and normal B cells.


Assuntos
Antígenos CD19/genética , Linfoma de Burkitt/genética , Antígenos CD79/genética , Aptidão Genética/genética , Linfócitos B/patologia , Linfoma de Burkitt/patologia , Sistemas CRISPR-Cas , Regulação Leucêmica da Expressão Gênica/genética , Humanos , Imunoglobulinas/genética , Motivo de Ativação do Imunorreceptor Baseado em Tirosina/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais
6.
PLoS Biol ; 17(12): e3000569, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31825964

RESUMO

Membrane proteins are organized in nanoscale compartments. Their reorganization plays a crucial role in receptor activation and cell signaling. To monitor the organization and reorganization of membrane proteins, we developed a new branched proximity hybridization assay (bPHA) allowing better quantification of the nanoscale protein-protein proximity. In this assay, oligo-coupled binding probes, such as aptamer, nanobody, and antibodies, are used to translate the proximity of target proteins to the proximity of oligos. The closely positioned oligos then serve as a template for a maximum of 400-fold branched DNA (bDNA) signal amplification. The amplified bPHA signal is recorded by flow cytometer, thus enabling proximity studies with high throughput, multiplexing, and single-cell resolution. To demonstrate the potential of the bPHA method, we measured the reorganization of the immunoglobulin M (IgM)- and immunoglobulin D (IgD)-class B cell antigen receptor (BCR) on the plasma membrane and the recruitment of spleen tyrosine kinase (Syk) to the BCR upon B lymphocyte activation.


Assuntos
Microdomínios da Membrana/metabolismo , Proteínas de Membrana/fisiologia , Mapeamento de Interação de Proteínas/métodos , Animais , Linfócitos B/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Humanos , Imunoglobulina D , Imunoglobulina M , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação Linfocitária/imunologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/imunologia , Quinase Syk
7.
Int J Mol Sci ; 19(11)2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30400198

RESUMO

Nanobodies, the smallest possible antibody format, have become of considerable interest for biotechnological and immunotherapeutic applications. They show excellent robustness, are non-immunogenic in humans, and can easily be engineered and produced in prokaryotic hosts. Traditionally, nanobodies are selected from camelid immune libraries involving the maintenance and treatment of animals. Recent advances have involved the generation of nanobodies from naïve or synthetic libraries. However, such approaches demand large library sizes and sophisticated selection procedures. Here, we propose an alternative, two-step approach for the design and generation of nanobodies. In a first step, complementarity-determining regions (CDRs) are grafted from conventional antibody formats onto nanobody frameworks, generating weak antigen binders. In a second step, the weak binders serve as templates to design focused synthetic phage libraries for affinity maturation. We validated this approach by grafting toxin- and hapten-specific CDRs onto frameworks derived from variable domains of camelid heavy-chain-only antibodies (VHH). We then affinity matured the hapten binder via panning of a synthetic phage library. We suggest that this strategy can complement existing immune, naïve, and synthetic library based methods, requiring neither animal experiments, nor large libraries, nor sophisticated selection protocols.


Assuntos
Engenharia de Proteínas/métodos , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Antígenos/metabolismo , Camelus , Regiões Determinantes de Complementaridade , Fluoresceína/metabolismo , Haptenos/metabolismo , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/química , Biblioteca de Peptídeos , Toxinas Biológicas/metabolismo
8.
Int J Mol Sci ; 18(7)2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704956

RESUMO

Unbiased and simultaneous identification of a specific antibody and its target antigen has been difficult without prior knowledge of at least one interaction partner. Immunization with complex mixtures of antigens such as whole organisms and tissue extracts including tumoral ones evokes a highly diverse immune response. During such a response, antibodies are generated against a variety of epitopes in the mixture. Here, we propose a surface display design that is suited to simultaneously identify camelid single domain antibodies and their targets. Immune libraries of single-domain antigen recognition fragments from camelid heavy chain-only antibodies (VHH) were attached to the peptidoglycan of Gram-positive Staphylococcus aureus employing its endogenous housekeeping sortase enzyme. The sortase transpeptidation reaction covalently attached the VHH to the bacterial peptidoglycan. The reversible nature of the reaction allowed the recovery of the VHH from the bacterial surface and the use of the VHH in downstream applications. These staphylococcal surface display libraries were used to rapidly identify VHH as well as their targets by immunoprecipitation (IP). Our novel bacterial surface display platform was stable under harsh screening conditions, allowed fast target identification, and readily permitted the recovery of the displayed VHH for downstream analysis.


Assuntos
Cadeias Pesadas de Imunoglobulinas/metabolismo , Staphylococcus aureus/metabolismo , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Bactérias Gram-Positivas/metabolismo , Imunoprecipitação , Peptidoglicano/metabolismo , Anticorpos de Domínio Único/metabolismo
9.
J Virol ; 89(5): 2792-800, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540369

RESUMO

UNLABELLED: Perturbation of protein-protein interactions relies mostly on genetic approaches or on chemical inhibition. Small RNA viruses, such as influenza A virus, do not easily lend themselves to the former approach, while chemical inhibition requires that the target protein be druggable. A lack of tools thus constrains the functional analysis of influenza virus-encoded proteins. We generated a panel of camelid-derived single-domain antibody fragments (VHHs) against influenza virus nucleoprotein (NP), a viral protein essential for nuclear trafficking and packaging of the influenza virus genome. We show that these VHHs can target NP in living cells and perturb NP's function during infection. Cytosolic expression of NP-specific VHHs (αNP-VHHs) disrupts virus replication at an early stage of the life cycle. Based on their specificity, these VHHs fall into two distinct groups. Both prevent nuclear import of the viral ribonucleoprotein (vRNP) complex without disrupting nuclear import of NP alone. Different stages of the virus life cycle thus rely on distinct nuclear localization motifs of NP. Their molecular characterization may afford new means of intervention in the virus life cycle. IMPORTANCE: Many proteins encoded by RNA viruses are refractory to manipulation due to their essential role in replication. Thus, studying their function and determining how to disrupt said function through pharmaceutical intervention are difficult. We present a novel method based on single-domain-antibody technology that permits specific targeting and disruption of an essential influenza virus protein in the absence of genetic manipulation of influenza virus itself. Characterization of such interactions may help identify new targets for pharmaceutical intervention. This approach can be extended to study proteins encoded by other viral pathogens.


Assuntos
Núcleo Celular/química , Núcleo Celular/virologia , Vírus da Influenza A/fisiologia , Proteínas de Ligação a RNA/análise , Anticorpos de Domínio Único/metabolismo , Proteínas do Core Viral/análise , Virologia/métodos , Replicação Viral , Animais , Linhagem Celular , Cães , Expressão Gênica , Biologia Molecular/métodos , Proteínas do Nucleocapsídeo , Anticorpos de Domínio Único/genética
10.
Nat Chem Biol ; 10(11): 950-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25282505

RESUMO

Severe forms of pneumococcal meningitis, bacteraemia and pneumonia result in more than 1 million deaths each year despite the widespread introduction of carbohydrate-protein conjugate vaccines against Streptococcus pneumoniae. Here we describe a new and highly efficient antipneumococcal vaccine design based on synthetic conjugation of S. pneumoniae capsule polysaccharides to the potent lipid antigen α-galactosylceramide, which stimulates invariant natural killer T (iNKT) cells when presented by the nonpolymorphic antigen-presenting molecule CD1d. Mice injected with the new lipid-carbohydrate conjugate vaccine produced high-affinity IgG antibodies specific for pneumococcal polysaccharides. Vaccination stimulated germinal center formation; accumulation of iNKT cells with a T follicular helper cell phenotype; and increased frequency of carbohydrate-specific, long-lived memory B cells and plasmablasts. This new lipid-carbohydrate vaccination strategy induced potent antipolysaccharide immunity that protected against pneumococcal disease in mice and may also prove effective for the design of carbohydrate-based vaccines against other major bacterial pathogens.


Assuntos
Carboidratos/química , Lipídeos/química , Vacinas Pneumocócicas/síntese química , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Linfócitos B/citologia , Linfócitos B/imunologia , Carboidratos/administração & dosagem , Linhagem Celular , Centro Germinativo/citologia , Centro Germinativo/imunologia , Células HL-60 , Humanos , Imunização Passiva , Memória Imunológica/imunologia , Cinética , Lipídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Vacinas Pneumocócicas/administração & dosagem , Vacinas Pneumocócicas/química , Fatores de Tempo , Vacinas Sintéticas/administração & dosagem
11.
Sensors (Basel) ; 15(4): 9592-609, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25912354

RESUMO

Electronic devices based on organic thin-film transistors (OTFT) have the potential to supply the demand for portable and low-cost gadgets, mainly as sensors for in situ disease diagnosis and environment monitoring. For that reason, poly(3-hexylthiophene) (P3HT) as the active layer in the widely-used bottom-gate/bottom-contact OTFT structure was deposited over highly-doped silicon substrates covered with thermally-grown oxide to detect vapor-phase compounds. A ten-fold organochloride and ammonia sensitivity compared to bare sensors corroborated the application of this semiconducting polymer in sensors. Furthermore, P3HT TFTs presented approximately three-order higher normalized sensitivity than any chemical sensor addressed herein. The results demonstrate that while TFTs respond linearly at the lowest concentration values herein, chemical sensors present such an operating regime mostly above 2000 ppm. Simultaneous alteration of charge carrier mobility and threshold voltage is responsible for pushing the detection limit down to units of ppm of ammonia, as well as tens of ppm of alcohol or ketones. Nevertheless, P3HT transistors and chemical sensors could compose an electronic nose operated at room temperature for a wide range concentration evaluation (1-10,000 ppm) of gaseous analytes. Targeted analytes include not only biomarkers for diseases, such as uremia, cirrhosis, lung cancer and diabetes, but also gases for environment monitoring in food, cosmetic and microelectronics industries.

12.
Proc Natl Acad Sci U S A ; 108(34): 14228-33, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21844346

RESUMO

CD1e is a member of the CD1 family that participates in lipid antigen presentation without interacting with the T-cell receptor. It binds lipids in lysosomes and facilitates processing of complex glycolipids, thus promoting editing of lipid antigens. We find that CD1e may positively or negatively affect lipid presentation by CD1b, CD1c, and CD1d. This effect is caused by the capacity of CD1e to facilitate rapid formation of CD1-lipid complexes, as shown for CD1d, and also to accelerate their turnover. Similar results were obtained with antigen-presenting cells from CD1e transgenic mice in which lipid complexes are assembled more efficiently and show faster turnover than in WT antigen-presenting cells. These effects maximize and temporally narrow CD1-restricted responses, as shown by reactivity to Sphingomonas paucimobilis-derived lipid antigens. CD1e is therefore an important modulator of both group 1 and group 2 CD1-restricted responses influencing the lipid antigen availability as well as the generation and persistence of CD1-lipid complexes.


Assuntos
Antígenos CD1/imunologia , Imunidade/imunologia , Lipídeos/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Clonais , Células Dendríticas/imunologia , Glicolipídeos/imunologia , Glicoproteínas/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Humanos , Cinética , Camundongos , Camundongos Transgênicos , Células T Matadoras Naturais/imunologia , Sphingomonas/imunologia
13.
Biosensors (Basel) ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36671977

RESUMO

Electrochemical biosensing devices are known for their simple operational procedures, low fabrication cost, and suitable real-time detection. Despite these advantages, they have shown some limitations in the immobilization of biochemicals. The development of alternative materials to overcome these drawbacks has attracted significant attention. Nanocellulose-based materials have revealed valuable features due to their capacity for the immobilization of biomolecules, structural flexibility, and biocompatibility. Bacterial nanocellulose (BNC) has gained a promising role as an alternative to antifouling surfaces. To widen its applicability as a biosensing device, BNC may form part of the supports for the immobilization of specific materials. The possibilities of modification methods and in situ and ex situ functionalization enable new BNC properties. With the new insights into nanoscale studies, we expect that many biosensors currently based on plastic, glass, or paper platforms will rely on renewable platforms, especially BNC ones. Moreover, substrates based on BNC seem to have paved the way for the development of sensing platforms with minimally invasive approaches, such as wearable devices, due to their mechanical flexibility and biocompatibility.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Celulose/química , Bactérias , Técnicas Biossensoriais/métodos , Plásticos
14.
J Immunol ; 184(3): 1235-41, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20026739

RESUMO

A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1/metabolismo , Movimento Celular/imunologia , Lipopolissacarídeos/imunologia , Sulfoglicoesfingolipídeos/imunologia , Animais , Antígenos CD1/genética , Bovinos , Movimento Celular/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endocitose/genética , Endocitose/imunologia , Células HeLa , Humanos , Lipopolissacarídeos/genética , Lipopolissacarídeos/metabolismo , Lisossomos/genética , Lisossomos/imunologia , Lisossomos/metabolismo , Proteínas Mutantes Quiméricas/imunologia , Proteínas Mutantes Quiméricas/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sulfoglicoesfingolipídeos/metabolismo
15.
Cell Rep ; 38(13): 110583, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354034

RESUMO

In mature B cells, TACI controls class-switch recombination and differentiation into plasma cells during T cell-independent antibody responses. TACI binds the ligands BAFF and APRIL. Approximately 10% of patients with common variable immunodeficiency (CVID) carry TACI mutations, of which A181E and C172Y are in the transmembrane domain. Residues A181 and C172 are located on distinct sides of the transmembrane helix, which is predicted by molecular modeling to spontaneously assemble into trimers and dimers. In human B cells, these mutations impair ligand-dependent (C172Y) and -independent (A181E) TACI multimerization and signaling, as well as TACI-enhanced proliferation and/or IgA production. Genetic inactivation of TACI in primary human B cells impaired survival of CpG-activated cells in the absence of ligand. These results identify the transmembrane region of TACI as an active interface for TACI multimerization in signal transduction, in particular for ligand-independent signals. These functions are perturbed by CVID-associated mutations.


Assuntos
Imunodeficiência de Variável Comum , Proteína Transmembrana Ativadora e Interagente do CAML , Linfócitos B , Proliferação de Células , Imunodeficiência de Variável Comum/genética , Imunodeficiência de Variável Comum/metabolismo , Humanos , Ligantes , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Proteína Transmembrana Ativadora e Interagente do CAML/metabolismo
16.
Sci Adv ; 8(6): eabm1759, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138894

RESUMO

The hallmark autoantibodies in rheumatoid arthritis are characterized by variable domain glycans (VDGs). Their abundant occurrence results from the selective introduction of N-linked glycosylation sites during somatic hypermutation, and their presence is predictive for disease development. However, the functional consequences of VDGs on autoreactive B cells remain elusive. Combining crystallography, glycobiology, and functional B cell assays allowed us to dissect key characteristics of VDGs on human B cell biology. Crystal structures showed that VDGs are positioned in the vicinity of the antigen-binding pocket, and dynamic modeling combined with binding assays elucidated their impact on binding. We found that VDG-expressing B cell receptors stay longer on the B cell surface and that VDGs enhance B cell activation. These results provide a rationale on how the acquisition of VDGs might contribute to the breach of tolerance of autoreactive B cells in a major human autoimmune disease.

17.
Eur J Immunol ; 40(11): 3268-79, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21061446

RESUMO

Atherosclerosis, a chronic inflammatory lipid storage disease of large arteries, is complicated by cardiovascular events usually precipitated by plaque rupture or erosion. Inflammation participates in lesion progression and plaque rupture. Identification of leukocyte populations involved in plaque destabilization is important for effective prevention of cardiovascular events. This study investigates CD1d-expressing cells and invariant NKT cells (iNKT) in human arterial tissue, their correlation with disease severity and symptoms, and potential mechanisms for their involvement in plaque formation and/or destabilization. CD1d-expressing cells were present in advanced plaques in patients who suffered from cardiovascular events in the past and were most abundant in plaques with ectopic neovascularization. Confocal microscopy detected iNKT cells in plaques, and plaque-derived iNKT cell lines promptly produced proinflammatory cytokines when stimulated by CD1d-expressing APC-presenting α-galactosylceramide lipid antigen. Furthermore, iNKT cells were diminished in the circulating blood of patients with symptomatic atherosclerosis. Activated iNKT cell-derived culture supernatants showed angiogenic activity in a human microvascular endothelial cell line HMEC-1-spheroid model of in vitro angiogenesis and strongly activated human microvascular endothelial cell line HMEC-1 migration. This functional activity was ascribed to IL-8 released by iNKT cells upon lipid recognition. These findings introduce iNKT cells as novel cellular candidates promoting plaque neovascularization and destabilization in human atherosclerosis.


Assuntos
Aterosclerose/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Células T Matadoras Naturais/imunologia , Neovascularização Patológica/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD1d/biossíntese , Antígenos CD1d/imunologia , Artérias/imunologia , Artérias/metabolismo , Artérias/patologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Citocinas/biossíntese , Citocinas/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
18.
Traffic ; 9(9): 1446-57, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18564371

RESUMO

CD1 proteins are a family of major histocompatibility complex (MHC) class I-like antigen-presenting molecules that present lipids to T cells. The cytoplasmic tails (CTs) of all human CD1 isoforms, with the exception of CD1a, contain tyrosine-based sorting motifs, responsible for the internalization of proteins by the clathrin-mediated pathway. The role of the CD1a CT, which does not possess any sorting motifs, as well as its mode of internalization are not known. We investigated the internalization and recycling pathways followed by CD1a and the role of its CT. We found that CD1a can be internalized by a clathrin- and dynamin-independent pathway and that it follows a Rab22a- and ADP ribosylation factor (ARF)6-dependent recycling pathway, similar to other cargo internalized independent of clathrin. We also found that the CD1a CT is S-acylated. However, this posttranslational modification does not determine the rate of internalization or recycling of the protein or its localization to detergent-resistant membrane microdomains (DRMs) where we found CD1a to be enriched. We also show that plasma membrane DRMs are essential for efficient CD1a-mediated antigen presentation. These findings place CD1a closer to MHC class I in its trafficking and potential antigen-loading compartments among CD1 isoforms. Furthermore, we identify CD1a as a new marker for the clathrin- and dynamin-independent and DRM-dependent pathway of internalization as well as the Rab22a- and ARF6-dependent recycling pathway.


Assuntos
Antígenos CD1/metabolismo , Endocitose/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/fisiologia , Animais , Apresentação de Antígeno , Antígenos CD1/genética , Antígenos CD1/imunologia , Clatrina/metabolismo , Clatrina/fisiologia , Citoplasma/imunologia , Citoplasma/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Células HeLa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Microdomínios da Membrana/imunologia , Microdomínios da Membrana/metabolismo , Mutação , Modificação Traducional de Proteínas , Subunidades Proteicas , Transporte Proteico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transfecção , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia
19.
Methods Mol Biol ; 2070: 79-94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31625091

RESUMO

Ever since the discovery of antibodies, they have been generated by complicated multi-step procedures. Typically, these involve sequencing, cloning, and screening after expression of the antibodies in a suitable organism and format. Here, a staphylococcal nanobody display is described that omits many the abovementioned intermediate steps and allows for simultaneous screening of multiple targets without prior knowledge nor expression of the binders. This paper reports a detailed, general step-by-step protocol to achieve nanobodies of high affinity. Apart from its focus on radioactive and fluorescent targets, it gives options for various other target formats and additional applications for the staphylococcal library; including flow cytometry and immunoprecipitation. This provides a system for antibody engineers that can be easily adopted to their specific needs.


Assuntos
Afinidade de Anticorpos , Antígenos , Biblioteca de Peptídeos , Engenharia de Proteínas , Anticorpos de Domínio Único , Staphylococcus aureus , Antígenos/biossíntese , Antígenos/química , Antígenos/genética , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
20.
ACS Omega ; 5(10): 5001-5012, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201786

RESUMO

This work unveils the roles played by potato starch (ST) in the immobilization, photochemical reduction, and gas sensitivity of graphene oxide (GO) films. The ST/GO films are assembled layer by layer (LbL) onto quartz substrates by establishing mutual hydrogen bonds that drive a stepwise film growth, with equal amounts of materials being adsorbed in each deposition cycle. Afterward, the films are photochemically reduced with UV irradiation (254 nm), following a first-order kinetics that proceeds much faster when GO is assembled along with ST instead of a nonoxygenated polyelectrolyte, namely, poly(diallyl dimethylammonium) hydrochloride (PDAC). Finally, the gas-sensing performance of ST/reduced graphene oxide (RGO) and PDAC/RGO sensors fabricated via LbL atop of gold interdigitated microelectrodes is evaluated at different relative humidity levels and in different concentrations of ammonia, ethanol, and acetone. In comparison to the PDAC/RGO sensor, the ones containing ST are much more sensitive, especially when operating in a high-relative-humidity environment. An array comprising these chemical sensors provides unique electrical fingerprints for each of the investigated analytes and is capable of discriminating and quantifying them in a wide range of concentrations, from 10 to 1000 ppm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA