Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 14657, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601973

RESUMO

Analyses of the integrated seagrass response to depth support the previously documented low plasticity and consistent shade-adapted leaf physiology of a habitat-builder that dominates well-illuminated reef environments. Two structural responses, "canopy-opening" and "below-ground-mass-depletion", govern the photoacclimatory response and facilitate, respectively, light penetration within the canopy and functional adjustments in whole-plant carbon balances. Conversely, "canopy-closing" may also explain dense canopies formed close to the waterline, as they provide shade and photoprotection to a susceptible leaf physiology under high-light. Canopy light attenuation is primarily regulated by the leaf area index (LAI), which is governed by changes in shoot size and density. Shoot density diminishes non-linearly with depth, while shoot size increases to a maximum followed by a decline. The initial increase in shoot size, which resembles a self-thinning response, increases LAI and meadow production in shallow depths. These seagrass structural adjustments have relevant ecological implications. Canopy-thinning allows macrophyte diversity to increase with depth, while seagrass production and carbon storage diminish exponentially, and are maximal only in a shallow coastal fringe. The results support the universality of plant self-thinning, from phytoplankton to complex canopies, likely the consequence of simple physical laws related to light limitation and pigment self-shading within photosynthetic structures and communities.


Assuntos
Aclimatação , Organismos Aquáticos/fisiologia , Ciclo do Carbono/fisiologia , Poaceae/fisiologia , Água do Mar/química , Carbono/metabolismo , Ciclo do Carbono/efeitos da radiação , Ecossistema , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
2.
New Phytol ; 176(1): 108-123, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17696981

RESUMO

Here, the leaf photoacclimatory plasticity and efficiency of the tropical seagrass Thalassia testudinum were examined. Mesocosms were used to compare the variability induced by three light conditions, two leaf sections and the variability observed at the collection site. The study revealed an efficient photosynthetic light use at low irradiances, but limited photoacclimatory plasticity to increase maximum photosynthetic rates (P(max)) and saturation (E(k)) and compensation (E(c)) irradiances under high light irradiance. A strong, positive and linear association between the percentage of daylight hours above saturation and the relative maximum photochemical efficiency (F(V)/F(M)) reduction observed between basal and apical leaf sections was also found. The results indicate that T. testudinum leaves have a shade-adapted physiology. However, the large amount of heterotrophic biomass that this seagrass maintains may considerably increase plant respiratory demands and their minimum quantum requirements for growth (MQR). Although the MQR still needs to be quantified, it is hypothesized that the ecological success of this climax species in the oligotrophic and highly illuminated waters of the Caribbean may rely on the ability of the canopy to regulate the optimal leaf light environment and the morphological plasticity of the whole plant to enhance total leaf area and to reduce carbon respiratory losses.


Assuntos
Aclimatação , Hydrocharitaceae/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Hydrocharitaceae/crescimento & desenvolvimento , Hydrocharitaceae/fisiologia , Hidroponia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA