RESUMO
Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.
Assuntos
Grafite , Eletrodos Seletivos de Íons , Humanos , Grafite/química , Nitritos , Água , LasersRESUMO
Plastic recycling rates are still low in the United States (U.S.), with less than 10% of municipal solid waste (MSW) plastic being recycled. Most unrecycled plastics are identified by Resin Identification Codes (RIC) from #3-7, which are commonly destined for landfill or waste-to-energy facilities (WTE). Therefore, the composition and quality of outbound bales containing #3-7 plastics were assessed to understand the potential to increase recycling rates. Three bales were sourced from three different Material Recovery Facilities (MRFs) located in the United States. Each bale was manually sorted and characterized for quality and performance via multiple plastic characterization techniques. Considerable differences in bale composition were observed between MRFs, which correlated with the technology used by each MRF in the sorting process. The differences were substantial in the residual levels of poly(ethylene terephthalate) (PET) and high-density polyethylene (HDPE), which are highly desired for mechanical recycling processes and not expected in #3-7 plastics bales. Traditional recycling processes including washing, extrusion, and injection molding of the sorted material were employed prior to the physical, thermal, and molecular characterization. Despite differences in bale composition by plastic type, some polymer properties were similar across MRFs. This research suggests that landfill-diverted mixed plastic waste can be utilized in the mechanical recycling of currently unrecycled materials, as processes can be designed to work with consistent polymer properties. It also highlights the need to upgrade the sorting systems to prevent waste feedstocks, which can be recycled with current technologies, from contaminating other plastic streams or reach landfills.
RESUMO
As the demand for plastics only increases, new methods are required to economically and sustainably increase plastic usage without landfill and environmental accumulation. In addition, the use of biofillers is encouraged as a way to reduce the cost of the final resin by incorporating agricultural and industrial waste by-products, such as rice hulls and coffee chaff to further reduce waste being sent to landfills. Crystalline poly(ethylene terephthalate) (CPET) is a resin commonly used for microwave and ovenable food packaging containers that have not been fully explored for recycling. In this article, we investigate how the incorporation of biofillers at 5% wt. and 10% wt. impacts critical polymer properties. The thermal and mechanical properties were not significantly altered with the presence of rice hulls or coffee chaff in the polymer matrix at 5% wt. loading, but some reduction in melt temperature, thermal stability, and maximum stress and strain was more noticed at 10% wt. The complex viscosity was also reduced with the introduction of biofillers. The levels of heavy metals of concern, such as Cd, Cr, and Pb, were below the regulatory limits applicable in the United States and Europe. Additional studies are suggested to improve the performance of CPET/biofiller blends by pre-treating the biofiller and using compatibilizers.
RESUMO
This paper compiles polymer characterization data collected from polyethylene (PE) blends composed of different densities (low-density, LDPE, linear low-density, LLDPE, medium-density, MDPE, and high-density, HDPE) and post-consumer recycled polyethylene (PCRPE), as presented by Cecon et al. (2021). The data were collected from injection molded samples submitted to several physical, thermal, and mechanical characterization techniques, including density, melt flow rate (MFR), thermogravimetric analysis, mechanical testing, and Fourier transform infrared spectroscopy. As there is a significant urgency in recycled polymer utilization in new consumer products from consumers, companies, and governments, the dataset herein presented can be a valuable tool for manufacturers, brand owners, and polymer engineers to model and anticipate different polymer properties associated with the increased use of PCRPE.