Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Technol ; 51(16): 9118-9126, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28665601

RESUMO

Monitoring biodiversity is essential to assess the impacts of increasing anthropogenic activities in marine environments. Traditionally, marine biomonitoring involves the sorting and morphological identification of benthic macro-invertebrates, which is time-consuming and taxonomic-expertise demanding. High-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) represents a promising alternative for benthic monitoring. However, an important fraction of eDNA sequences remains unassigned or belong to taxa of unknown ecology, which prevent their use for assessing the ecological quality status. Here, we show that supervised machine learning (SML) can be used to build robust predictive models for benthic monitoring, regardless of the taxonomic assignment of eDNA sequences. We tested three SML approaches to assess the environmental impact of marine aquaculture using benthic foraminifera eDNA, a group of unicellular eukaryotes known to be good bioindicators, as features to infer macro-invertebrates based biotic indices. We found similar ecological status as obtained from macro-invertebrates inventories. We argue that SML approaches could overcome and even bypass the cost and time-demanding morpho-taxonomic approaches in future biomonitoring.


Assuntos
Código de Barras de DNA Taxonômico , Foraminíferos , Aprendizado de Máquina Supervisionado , Biodiversidade , Ecologia , Monitoramento Ambiental
2.
Nature ; 447(7142): 307-11, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17507981

RESUMO

Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental features, including a very deep continental shelf and a weakly stratified water column, and are the source for much of the deep water in the world ocean. These features suggest that deep-sea faunas around the Antarctic may be related both to adjacent shelf communities and to those in other oceans. Unlike shallow-water Antarctic benthic communities, however, little is known about life in this vast deep-sea region. Here, we report new data from recent sampling expeditions in the deep Weddell Sea and adjacent areas (748-6,348 m water depth) that reveal high levels of new biodiversity; for example, 674 isopods species, of which 585 were new to science. Bathymetric and biogeographic trends varied between taxa. In groups such as the isopods and polychaetes, slope assemblages included species that have invaded from the shelf. In other taxa, the shelf and slope assemblages were more distinct. Abyssal faunas tended to have stronger links to other oceans, particularly the Atlantic, but mainly in taxa with good dispersal capabilities, such as the Foraminifera. The isopods, ostracods and nematodes, which are poor dispersers, include many species currently known only from the Southern Ocean. Our findings challenge suggestions that deep-sea diversity is depressed in the Southern Ocean and provide a basis for exploring the evolutionary significance of the varied biogeographic patterns observed in this remote environment.


Assuntos
Biodiversidade , Geografia , Água do Mar , Animais , Regiões Antárticas , Invertebrados/classificação , Invertebrados/fisiologia , Biologia Marinha , Oceanos e Mares , Filogenia
3.
Proc Natl Acad Sci U S A ; 107(3): 1148-53, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20080540

RESUMO

Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulate and respire nitrates through denitrification. The widespread occurrence among distantly related organisms suggests an ancient origin of the trait. The diverse metabolic capacity of these organisms, which enables them to respire with oxygen and nitrate and to sustain respiratory activity even when electron acceptors are absent from the environment, may be one of the reasons for their successful colonization of diverse marine sediment environments. The contribution of eukaryotes to the removal of fixed nitrogen by respiration may equal the importance of bacterial denitrification in ocean sediments.


Assuntos
Foraminíferos/metabolismo , Nitratos/metabolismo , Rhizaria/metabolismo , Evolução Molecular , Filogenia , Especificidade da Espécie
4.
Nature ; 443(7107): 93-6, 2006 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-16957731

RESUMO

Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseudospinescens accumulates intracellular nitrate stores and that these can be respired to dinitrogen gas. The amounts of nitrate detected are estimated to be sufficient to support respiration for over a month. In a Swedish fjord sediment where G. pseudospinescens is the dominant foraminifer, the intracellular nitrate pool in this species accounted for 20% of the large, cell-bound, nitrate pool present in an oxygen-free zone. Similarly high nitrate concentrations were also detected in foraminifera Nonionella cf. stella and a Stainforthia species, the two dominant benthic taxa occurring within the oxygen minimum zone of the continental shelf off Chile. Given the high abundance of foraminifera in anoxic marine environments, these new findings suggest that foraminifera may play an important role in global nitrogen cycling and indicate that our understanding of the complexity of the marine nitrogen cycle is far from complete.


Assuntos
Células Eucarióticas/metabolismo , Nitritos/metabolismo , Anaerobiose , Archaea/genética , Chile , Células Eucarióticas/ultraestrutura , Sedimentos Geológicos/química , Nitrogênio/metabolismo , Oxigênio/metabolismo , Suécia
5.
Eur J Protistol ; 86: 125932, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36347189

RESUMO

Single-chambered (monothalamous) foraminifera are poorly known compared to their multichambered relatives. In this first study of monothalamids from Greenland, we describe one new genus and two new species belonging to different clades from the Nuuk fjord system. Nujappikia idaliae Gooday & Holzmann gen. nov. sp. nov. (Clade Y) has a bottle-shaped test terminating in a single aperture located on a short neck. The flexible wall is basically organic but with a very fine agglutinated veneer. Bathyallogromia kalaallita Gooday & Holzmann sp. nov. (Clade C) has a broadly ovate test with an organic wall and a mound-like apertural structure. It is larger and genetically distinct from the two other Bathyallogromia species, both from the Southern Ocean. A survey of the morphological diversity of monothalamids in our samples revealed 49 morphospecies, of which 19, including the two new species, yielded DNA sequences. Five were assigned to the genera Bathysiphon, (Clade BM), Micrometula. (Clade BM), Psammophaga. (Clade E), Hippocrepinella (Clade D) and Crithionina (Clade J). The remaining twelve represented unknown taxa branching in clades A, C, F, and Y and one new clade. Our results add to growing evidence that monothalamids are common and diverse in fjords and other high-latitude settings.


Assuntos
Foraminíferos , Rhizaria , Foraminíferos/genética , Rhizaria/genética , Groenlândia , Filogenia , Análise de Sequência de DNA
6.
Front Microbiol ; 8: 617, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473806

RESUMO

A substantial nitrate pool is stored within living cells in various benthic marine environments. The fate of this bioavailable nitrogen differs according to the organisms managing the intracellular nitrate (ICN). While some light has been shed on the nitrate carried by diatoms and foraminiferans, no study has so far followed the nitrate kept by gromiids. Gromiids are large protists and their ICN concentration can exceed 1000x the ambient nitrate concentration. In the present study we investigated gromiids from diverse habitats and showed that they contained nitrate at concentrations ranging from 1 to 370 mM. We used 15N tracer techniques to investigate the source of this ICN, and found that it originated both from active nitrate uptake from the environment and from intracellular production, most likely through bacterial nitrification. Microsensor measurements showed that part of the ICN was denitrified to N2 when gromiids were exposed to anoxia. Denitrification seemed to be mediated by endobiotic bacteria because antibiotics inhibited denitrification activity. The active uptake of nitrate suggests that ICN plays a role in gromiid physiology and is not merely a consequence of the gromiid hosting a diverse bacterial community. Measurements of aerobic respiration rates and modeling of oxygen consumption by individual gromiid cells suggested that gromiids may occasionally turn anoxic by their own respiration activity and thus need strategies for coping with this self-inflicted anoxia.

7.
Mol Ecol Resour ; 14(6): 1129-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24734911

RESUMO

The measurement of species diversity represents a powerful tool for assessing the impacts of human activities on marine ecosystems. Traditionally, the impact of fish farming on the coastal environment is evaluated by monitoring the dynamics of macrobenthic infaunal populations. However, taxonomic sorting and morphology-based identification of the macrobenthos demand highly trained specialists and are extremely time-consuming and costly, making it unsuitable for large-scale biomonitoring efforts involving numerous samples. Here, we propose to alleviate this laborious task by developing protist metabarcoding tools based on next-generation sequencing (NGS) of environmental DNA and RNA extracted from sediment samples. In this study, we analysed the response of benthic foraminiferal communities to the variation of environmental gradients associated with salmon farms in Scotland. We investigated the foraminiferal diversity based on ribosomal minibarcode sequences generated by the Illumina NGS technology. We compared the molecular data with morphospecies counts and with environmental gradients, including distance to cages and redox used as a proxy for sediment oxygenation. Our study revealed high variations between foraminiferal communities collected in the vicinity of fish farms and at distant locations. We found evidence for species richness decrease in impacted sites, especially visible in the RNA data. We also detected some candidate bioindicator foraminiferal species. Based on this proof-of-concept study, we conclude that NGS metabarcoding using foraminifera and other protists has potential to become a new tool for surveying the impact of aquaculture and other industrial activities in the marine environment.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Pesqueiros , Foraminíferos/classificação , Foraminíferos/genética , Sedimentos Geológicos/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Biodiversidade , Humanos , Salmão/crescimento & desenvolvimento , Escócia
8.
Proc Natl Acad Sci U S A ; 100(20): 11494-8, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-14504394

RESUMO

Fossil Foraminifera appear in the Early Cambrian, at about the same time as the first skeletonized metazoans. However, due to the inadequate preservation of early unilocular (single-chambered) foraminiferal tests and difficulties in their identification, the evolution of early foraminifers is poorly understood. By using molecular data from a wide range of extant naked and testate unilocular species, we demonstrate that a large radiation of nonfossilized unilocular Foraminifera preceded the diversification of multilocular lineages during the Carboniferous. Within this radiation, similar test morphologies and wall types developed several times independently. Our findings indicate that the early Foraminifera were an important component of Neoproterozoic protistan community, whose ecological complexity was probably much higher than has been generally accepted.


Assuntos
Evolução Biológica , Células Eucarióticas , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA