Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Med Genet ; 60(4): 327-336, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137616

RESUMO

BACKGROUND: Common low-risk variants are presently not used to guide clinical management of familial breast cancer (BC). We explored the additive impact of a 313-variant-based Polygenic Risk Score (PRS313) relative to standard gene testing in non-BRCA1/2 Dutch BC families. METHODS: We included 3918 BC cases from 3492 Dutch non-BRCA1/2 BC families and 3474 Dutch population controls. The association of the standardised PRS313 with BC was estimated using a logistic regression model, adjusted for pedigree-based family history. Family history of the controls was imputed for this analysis. SEs were corrected to account for relatedness of individuals. Using the BOADICEA (Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm) V.5 model, lifetime risks were retrospectively calculated with and without individual PRS313. For 2586 cases and 2584 controls, the carrier status of pathogenic variants (PVs) in ATM, CHEK2 and PALB2 was known. RESULTS: The family history-adjusted PRS313 was significantly associated with BC (per SD OR=1.97, 95% CI 1.84 to 2.11). Including the PRS313 in BOADICEA family-based risk prediction would have changed screening recommendations in up to 27%, 36% and 34% of cases according to BC screening guidelines from the USA, UK and the Netherlands (National Comprehensive Cancer Network, National Institute for Health and Care Excellence, and Netherlands Comprehensive Cancer Organisation), respectively. For the population controls, without information on family history, this was up to 39%, 44% and 58%, respectively. Among carriers of PVs in known moderate BC susceptibility genes, the PRS313 had the largest impact for CHEK2 and ATM. CONCLUSIONS: Our results support the application of the PRS313 in risk prediction for genetically uninformative BC families and families with a PV in moderate BC risk genes.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Predisposição Genética para Doença , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco
2.
Cancer Res ; 82(4): 615-631, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903604

RESUMO

Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE: Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.


Assuntos
Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Células Cultivadas , Quinase do Ponto de Checagem 2/metabolismo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Neoplasias/enzimologia , Linhagem , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Fatores de Risco
3.
Nat Commun ; 10(1): 5296, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757951

RESUMO

Heterozygous carriers of germ-line loss-of-function variants in the DNA repair gene PALB2 are at a highly increased lifetime risk for developing breast cancer. While truncating variants in PALB2 are known to increase cancer risk, the interpretation of missense variants of uncertain significance (VUS) is in its infancy. Here we describe the development of a relatively fast and easy cDNA-based system for the semi high-throughput functional analysis of 48 VUS in human PALB2. By assessing the ability of PALB2 VUS to rescue the DNA repair and checkpoint defects in Palb2 knockout mouse embryonic stem (mES) cells, we identify various VUS in PALB2 that impair its function. Three VUS in the coiled-coil domain of PALB2 abrogate the interaction with BRCA1, whereas several VUS in the WD40 domain dramatically reduce protein stability. Thus, our functional assays identify damaging VUS in PALB2 that may increase cancer risk.


Assuntos
Neoplasias da Mama/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Técnicas Genéticas , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Animais , DNA Complementar , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Citometria de Fluxo , Predisposição Genética para Doença , Instabilidade Genômica , Humanos , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA