Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 47(2): 222-236, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759149

RESUMO

The basis for mastering neurophysiology is understanding ion movement across cell membranes. The Electrochemical Gradients Assessment Device (EGAD) is a 17-item test assessing students' understanding of fundamental concepts of neurophysiology, e.g., electrochemical gradients and resistance, synaptic transmission, and stimulus strength. We collected responses to the EGAD from 534 students from seven institutions nationwide, before and after instruction. We determined the relative difficulty of neurophysiology topics and noted that students did better on "what" questions compared to "how" questions, particularly those integrating concentration gradient and electric forces to predict ion movement. We also found that, even after instruction, students selected one incorrect answer, at a rate greater than random chance for nine questions. We termed these incorrect answers attractive distractors. Most attractive distractors contained terms associated with concentration gradients, equilibrium, or anthropomorphic and teleological reasoning, and incorrect answers containing multiple terms were more attractive. We used χ2 analysis and alluvial diagrams to investigate how individual students moved or did not move between answer choices on the pre- and posttest. Interestingly, students selecting the attractive distractor on the pretest were just as likely as other incorrect students to move to the correct answer on the posttest. In contrast, of students incorrect on both the pre- and posttest, students who selected the attractive distractor on the pretest were more likely to stick with this answer on the posttest than students choosing other incorrect answers. Combining the EGAD results with alluvial diagrams can inform neurophysiology instruction to address points of student confusion.NEW & NOTEWORTHY Investigating students' alternative reasoning in neurophysiology, this research is the first to investigate how analyzing the most common incorrect answer can shed light on the concepts students struggle with when reasoning about neurophysiological problems, especially those dealing with both chemical and electrical driving forces to predict ion movement across cell membranes.


Assuntos
Avaliação Educacional , Neurofisiologia , Humanos , Neurofisiologia/educação , Avaliação Educacional/métodos , Estudantes , Resolução de Problemas
2.
Adv Physiol Educ ; 47(2): 282-295, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727693

RESUMO

The Physiology Core Concept of flow down gradients is a major concept in physiology, as pressure gradients are the key driving force for the bulk flow of fluids in biology. However, students struggle to understand that this principle is foundational to the mechanisms governing bulk flow across diverse physiological systems (e.g., blood flow, phloem sap flow). Our objective was to investigate whether bulk flow items that differ in scenario context (i.e., taxa, amount of scientific terminology, living or nonliving system) or in which aspect of the pressure gradient is kept constant (i.e., starting pressure or pressure gradient) influence undergraduate students' reasoning. Item scenario context did not impact the type of reasoning students used. However, students were more likely to use the Physiology Core Concept of "flow down [pressure] gradients" when the pressure gradient was kept constant and less likely to use this concept when the starting pressure was kept constant. We also investigated whether item scenario context or which aspect of the pressure gradient is kept constant impacted how consistent students were in the type of reasoning they used across two bulk flow items on the same homework. Most students were consistent across item scenario contexts (76%) and aspects of the pressure gradient kept constant (70%). Students who reasoned using "flow down gradients" on the first item were the most consistent (86, 89%), whereas students using "pressures indicate (but don't cause) flow" were the least consistent (43, 34%). Students who are less consistent know that pressure is somehow involved or indicates fluid flow but do not have a firm grasp of the concept of a pressure gradient as the driving force for fluid flow. These findings are the first empirical evidence to support the claim that using Physiology Core Concept reasoning supports transfer of knowledge across different physiological systems.NEW & NOTEWORTHY These findings are the first empirical evidence to support the claim that using Physiology Core Concept reasoning supports transfer of knowledge across different physiological systems.


Assuntos
Fenômenos Fisiológicos , Quercus , Humanos , Resolução de Problemas , Estudantes , Artérias
3.
Adv Physiol Educ ; 43(2): 211-220, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31088158

RESUMO

The basis for understanding neurophysiology is understanding ion movement across cell membranes. Students in introductory courses recognize ion concentration gradients as a driving force for ion movement but struggle to simultaneously account for electrical charge gradients. We developed a 17-multiple-choice item assessment of students' understanding of electrochemical gradients and resistance in neurophysiology, the Electrochemical Gradients Assessment Device (EGAD). We investigated the internal evidence validity of the assessment by analyzing item characteristic curves of score probability and student ability for each question, and a Wright map of student scores and ability. We used linear mixed-effect regression to test student performance and ability. Our assessment discriminated students with average ability (weighted likelihood estimate: -2 to 1.5 Θ); however, it was not as effective at discriminating students at the highest ability (weighted likelihood estimate: >2 Θ). We determined the assessment could capture changes in both assessment scores (model r2 = 0.51, P < 0.001, n = 444) and ability estimates (model r2 = 0.47, P < 0.001, n = 444) after a simulation-based laboratory and course instruction for 222 students. Differential item function analysis determined that each item on the assessment performed equitably for all students, regardless of gender, race/ethnicity, or economic status. Overall, we found that men scored higher (r2 = 0.51, P = 0.014, n = 444) and had higher ability scores (P = 0.003) on the EGAD assessment. Caucasian students of both genders were positively correlated with score (r2 = 0.51, P < 0.001, n = 444) and ability (r2 = 0.47, P < 0.001, n = 444). Based on the evidence gathered through our analyses, the scores obtained from the EGAD can distinguish between levels of content knowledge on neurophysiology principles for students in introductory physiology courses.


Assuntos
Avaliação Educacional/métodos , Técnicas Eletroquímicas/métodos , Neurofisiologia/educação , Neurofisiologia/métodos , Estudantes , Feminino , Humanos , Masculino
4.
CBE Life Sci Educ ; 22(2): ar23, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972334

RESUMO

Pressure gradients serve as the key driving force for the bulk flow of fluids in biology (e.g., blood, air, phloem sap). However, students often struggle to understand the mechanism that causes these fluids to flow. To investigate student reasoning about bulk flow, we collected students' written responses to assessment items and interviewed students about their bulk flow ideas. From these data, we constructed a bulk flow pressure gradient reasoning framework that describes the different patterns in reasoning that students express about what causes fluids to flow and ordered those patterns into sequential levels from more informal ways of reasoning to more scientific, mechanistic ways of reasoning. We obtained validity evidence for this bulk flow pressure gradient reasoning framework by collecting and analyzing written responses from a national sample of undergraduate biology and allied health majors from 11 courses at five institutions. Instructors can use the bulk flow pressure gradient reasoning framework and assessment items to inform their instruction of this topic and formatively assess their students' progress toward more scientific, mechanistic ways of reasoning about this important physiological concept.


Assuntos
Resolução de Problemas , Estudantes , Humanos , Redação
5.
Aging (Albany NY) ; 9(2): 487-493, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28186493

RESUMO

For all species, finite metabolic resources must be allocated toward three competing systems: maintenance, reproduction, and growth. Telomeres, the nucleoprotein tips of chromosomes, which shorten with age in most species, are correlated with increased survival. Chick growth is energetically costly and is associated with telomere shortening in most species. To assess the change in telomeres in penguin chicks, we quantified change in telomere length of wild known-age Magellanic penguin (Spheniscus magellanicus) chicks every 15 days during the species' growth period, from hatching to 60 days-of-age. Magellanic penguins continue to grow after fledging so we also sampled a set of 1-year-old juvenile penguins, and adults aged 5 years. Telomeres were significantly shorter on day 15 than on hatch day but returned to their initial length by 30 days old and remained at that length through 60 days of age. The length of telomeres of newly hatched chicks, chicks aged 30, 45 and 60 days, juveniles, and adults aged 5 years were similar. Chicks that fledged and those that died had similar telomere lengths. We show that while telomeres shorten during growth, Magellanic penguins elongate telomeres to their length at hatch, which may increase adult life span and reproductive opportunities.


Assuntos
Envelhecimento/fisiologia , Homeostase do Telômero/fisiologia , Encurtamento do Telômero/fisiologia , Telômero/fisiologia , Animais , Spheniscidae
6.
Ecol Evol ; 7(15): 5682-5691, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28811878

RESUMO

All species should invest in systems that enhance longevity; however, a fundamental adult life-history trade-off exists between the metabolic resources allocated to maintenance and those allocated to reproduction. Long-lived species will invest more in reproduction than in somatic maintenance as they age. We investigated this trade-off by analyzing correlations among telomere length, reproductive effort and output, and basal corticosterone in Magellanic penguins (Spheniscus magellanicus). Telomeres shorten with age in most species studied to date, and may affect adult survival. High basal corticosterone is indicative of stressful conditions. Corticosterone, and stress, has been linked to telomere shortening in other species. Magellanic penguins are a particularly good model organism for this question as they are an unusually long-lived species, exceeding their mass-adjusted predicted lifespan by 26%. Contrary to our hypothesis, we found adults aged 5 years to over 24 years of age had similar telomere lengths. Telomeres of adults did not shorten over a 3-year period, regardless of the age of the individual. Neither telomere length, nor the rate at which the telomeres changed over these 3 years, correlated with breeding frequency or investment. Older females also produced larger volume clutches until approximately 15 years old and larger eggs produced heavier fledglings. Furthermore, reproductive success (chicks fledged/eggs laid) is maintained as females aged. Basal corticosterone, however, was not correlated with telomere length in adults and suggests that low basal corticosterone may play a role in the telomere maintenance we observed. Basal corticosterone also declined during the breeding season and was positively correlated with the age of adult penguins. This higher basal corticosterone in older individuals, and consistent reproductive success, supports the prediction that Magellanic penguins invest more in reproduction as they age. Our results demonstrate that telomere maintenance may be a component of longevity even with increased reproductive effort, investment, and basal corticosterone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA