Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pain ; 21(4): 623-634, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27748566

RESUMO

BACKGROUND: Opiates act through opioid receptors to diminish pain. Here, we investigated whether mu (MOR) and delta (DOR) receptor endogenous activity assessed in the whole mouse body or in particular at peripheral receptors on primary nociceptive neurons, control colonic pain. METHODS: We compared global MOR and DOR receptor knockout (KO) mice, mice with a conditional deletion of MOR and DOR in Nav1.8-positive nociceptive primary afferent neurons (cKO), and control floxed mice of both genders for visceral sensitivity. Visceromotor responses to colorectal distension (CRD) and macroscopic colon scores were recorded on naïve mice and mice with acute colitis induced by 3% dextran sodium sulphate (DSS) for 5 days. Transcript expression for opioid genes and cytokines was measured by quantitative RT-PCR. RESULTS: Naïve MOR and DOR global KO mice show increased visceral sensitivity that was not observed in cKO mice. MOR and preproenkephalin (Penk) were the most expressed opioid genes in colon. MOR KO mice had augmented kappa opioid receptor and Tumour-Necrosis-Factor-α and diminished Penk transcript levels while DOR, preprodynorphin and Interleukin-1ß were unchanged. Global MOR KO females had a thicker colon than floxed females. No alteration was detected in DOR mutant animals. A 5-day DSS treatment led to comparable hypersensitivity in the different mouse lines. CONCLUSION: Our results suggest that mu and delta opioid receptor global endogenous activity but not activity at the peripheral Nav1.8 neurons contribute to visceral sensitivity in naïve mice, and that endogenous MOR and DOR tones were insufficient to elicit analgesia after 5-day DSS-induced colitis. SIGNIFICANCE: Knockout mice for mu and delta opioid receptor have augmented colon sensitivity in the CRD assay. It shows endogenous mu and delta opioid analgesia that may be explored as potential targets for alleviating chronic intestinal pain.


Assuntos
Colite/genética , Dor/genética , Receptores Opioides delta/genética , Receptores Opioides mu/genética , Analgésicos Opioides/farmacologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Dinorfinas/genética , Dinorfinas/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , Dor/metabolismo , Manejo da Dor , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Neuroscience ; 313: 46-56, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26480813

RESUMO

Delta opioid (DOP) receptors participate to the control of chronic pain and emotional responses. Recent data also identified their implication in spatial memory and drug-context associations pointing to a critical role of hippocampal delta receptors. To better appreciate the impact of repeated drug exposure on their modulatory activity, we used fluorescent knock-in mice that express a functional delta receptor fused at its carboxy-terminus with the green fluorescent protein in place of the native receptor. We then tested the impact of chronic morphine treatment on the density and distribution of delta receptor-expressing cells in the hippocampus. A decrease in delta receptor-positive cell density was observed in the CA1, CA3 and dentate gyrus without alteration of the distribution across the different GABAergic populations that mainly express delta receptors. This effect partly persisted after four weeks of morphine abstinence. In addition, we observed increased DOP receptor expression at the cell surface compared to saline-treated animals. In the hippocampus, chronic morphine administration thus induces DOP receptor cellular redistribution and durably decreases delta receptor-expressing cell density. Such modifications are likely to alter hippocampal physiology, and to contribute to long-term cognitive deficits.


Assuntos
Hipocampo/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dependência de Morfina/metabolismo , Dependência de Morfina/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptores Opioides delta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA