Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 48(8): 4274-4297, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32187369

RESUMO

Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Dano ao DNA , Desoxirribonucleotídeos/metabolismo , Genoma Fúngico , Instabilidade Genômica , Mutação , Ribonuclease H/genética , Ribonucleases/genética , Pontos de Checagem da Fase S do Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
2.
Trends Biochem Sci ; 41(5): 434-445, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26996833

RESUMO

The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the ribonucleotide excision repair (RER) pathway, a process similar to Okazaki fragment (OF) processing after incision by Ribonuclease H2 (RNase H2). All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when, and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA. We also review the data that indicate that removal of ribonucleotides has an important role in maintaining genome stability.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Reparo do DNA , DNA/metabolismo , Lúpus Eritematoso Sistêmico/genética , Malformações do Sistema Nervoso/genética , Ribonuclease H/genética , Ribonucleotídeos/metabolismo , Animais , Archaeoglobus fulgidus/genética , Archaeoglobus fulgidus/metabolismo , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/patologia , DNA/genética , Replicação do DNA , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Instabilidade Genômica , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Mutação , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Nucleossomos/genética , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Ribonuclease H/química , Ribonuclease H/metabolismo , Ribonucleotídeos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Curr Genet ; 66(6): 1073-1084, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32886170

RESUMO

RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality. In humans, deficiencies in RNase H2 induce the autoimmune disorders Aicardi-Goutières syndrome and systemic lupus erythematosus, and cause skin and intestinal cancers. Recently, we reported that in Saccharomyces cerevisiae, the depletion of Rnr1, the major catalytic subunit of ribonucleotide reductase (RNR), which converts ribonucleotides to deoxyribonucleotides, leads to cell lethality in absence of RNases H1 and H2. We hypothesized that under replicative stress and compromised DNA repair that are elicited by an insufficient supply of deoxyribonucleoside-triphosphates (dNTPs), cells cannot survive the accumulation of persistent RNA/DNA hybrids. Remarkably, we found that cells lacking RNase H2 accumulate ~ 5-fold more genomic rNMPs in absence than in presence of Rnr1. When the load of genomic rNMPs is further increased in the presence of a replicative DNA polymerase variant that over-incorporates rNMPs in leading or lagging strand, cells missing both Rnr1 and RNase H2 suffer from severe growth defects. These are reversed in absence of Top1. Thus, in cells lacking RNase H2 and containing a limiting supply of dNTPs, there is a threshold of tolerance for the accumulation of genomic ribonucleotides that is tightly associated with Top1-mediated DNA damage. In this mini-review, we describe the implications of the loss of RNase H2, or RNases H1 and H2, on the integrity of the nuclear genome and viability of budding yeast cells that are challenged with a critically low supply of dNTPs. We further propose that our findings in budding yeast could pave the way for the study of the potential role of mammalian RNR in RNase H2-related diseases.


Assuntos
Replicação do DNA/genética , DNA Topoisomerases Tipo I/genética , Ribonuclease H/genética , Animais , Reparo do DNA/genética , Humanos , Camundongos , Mutagênese , Ribonucleotídeos/genética , Saccharomyces cerevisiae/genética
4.
Mol Cell ; 47(6): 980-6, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22864116

RESUMO

Ribonucleotides are incorporated into DNA by the replicative DNA polymerases at frequencies of about 2 per kb, which makes them by far the most abundant form of potential DNA damage in the cell. Their removal is essential for restoring a stable intact chromosome. Here, we present a complete biochemical reconstitution of the ribonucleotide excision repair (RER) pathway with enzymes purified from Saccharomyces cerevisiae. RER is most efficient when the ribonucleotide is incised by RNase H2, and further excised by the flap endonuclease FEN1 with strand displacement synthesis carried out by DNA polymerase δ, the PCNA clamp, its loader RFC, and completed by DNA ligase I. We observed partial redundancy for several of the enzymes in this pathway. Exo1 substitutes for FEN1 and Pol ε for Pol δ with reasonable efficiency. However, RNase H1 fails to substitute for RNase H2 in the incision step of RER.


Assuntos
Acetiltransferases/metabolismo , Reparo do DNA , Proteínas de Membrana/metabolismo , Ribonuclease H/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
5.
Mol Cell ; 40(4): 658-70, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095591

RESUMO

Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of recognition and substrate-assisted cleavage. A conserved tyrosine residue distorts the nucleic acid at the junction, allowing the substrate to function in catalysis by participating in coordination of the active site metal ion. The biochemical and structural properties of RNase H2 explain the preference of the enzyme for junction substrates and establish the structural and mechanistic differences with RNase H1. Junction recognition is important for the removal of RNA embedded in DNA and may play an important role in DNA replication and repair.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Doenças Autoimunes do Sistema Nervoso/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Malformações do Sistema Nervoso/enzimologia , Conformação de Ácido Nucleico , Ligação Proteica , Ribonuclease H/isolamento & purificação , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 112(30): 9334-9, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26162680

RESUMO

Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.


Assuntos
Primers do DNA/química , Replicação do DNA , DNA Mitocondrial/química , Ribonuclease H/química , Animais , Linhagem Celular , DNA/química , Éxons , Fibroblastos/metabolismo , Genótipo , Homozigoto , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Nucleotídeos/química , RNA/química , RNA Mitocondrial , Origem de Replicação
7.
Nucleic Acids Res ; 41(5): 3130-43, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355612

RESUMO

Ribonuclease H2 (RNase H2) protects genome integrity by its dual roles of resolving transcription-related R-loops and ribonucleotides incorporated in DNA during replication. To unlink these two functions, we generated a Saccharomyces cerevisiae RNase H2 mutant that can resolve R-loops but cannot cleave single ribonucleotides in DNA. This mutant definitively correlates the 2-5 bp deletions observed in rnh201Δ strains with single rNMPs in DNA. It also establishes a connection between R-loops and Sgs1-mediated replication reinitiation at stalled forks and identifies R-loops uniquely processed by RNase H2. In mouse, deletion of any of the genes coding for RNase H2 results in embryonic lethality, and in humans, RNase H2 hypomorphic mutations cause Aicardi-Goutières syndrome (AGS), a neuroinflammatory disorder. To determine the contribution of R-loops and rNMP in DNA to the defects observed in AGS, we characterized in yeast an AGS-related mutation, which is impaired in processing both substrates, but has sufficient R-loop degradation activity to complement the defects of rnh201Δ sgs1Δ strains. However, this AGS-related mutation accumulates 2-5 bp deletions at a very similar rate as the deletion strain.


Assuntos
Ribonuclease H/química , Saccharomyces cerevisiae/enzimologia , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/química , Reparo do DNA , Humanos , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , RNA/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleases/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
8.
J Biol Chem ; 286(12): 10540-50, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21177858

RESUMO

RNase H2 cleaves RNA sequences that are part of RNA/DNA hybrids or that are incorporated into DNA, thus, preventing genomic instability and the accumulation of aberrant nucleic acid, which in humans induces Aicardi-Goutières syndrome, a severe autoimmune disorder. The 3.1 Å crystal structure of human RNase H2 presented here allowed us to map the positions of all 29 mutations found in Aicardi-Goutières syndrome patients, several of which were not visible in the previously reported mouse RNase H2. We propose the possible effects of these mutations on the protein stability and function. Bacterial and eukaryotic RNases H2 differ in composition and substrate specificity. Bacterial RNases H2 are monomeric proteins and homologs of the eukaryotic RNases H2 catalytic subunit, which in addition possesses two accessory proteins. The eukaryotic RNase H2 heterotrimeric complex recognizes RNA/DNA hybrids and (5')RNA-DNA(3')/DNA junction hybrids as substrates with similar efficiency, whereas bacterial RNases H2 are highly specialized in the recognition of the (5')RNA-DNA(3') junction and very poorly cleave RNA/DNA hybrids in the presence of Mg(2+) ions. Using the crystal structure of the Thermotoga maritima RNase H2-substrate complex, we modeled the human RNase H2-substrate complex and verified the model by mutational analysis. Our model indicates that the difference in substrate preference stems from the different position of the crucial tyrosine residue involved in substrate binding and recognition.


Assuntos
Modelos Moleculares , Ribonuclease H/química , Animais , Doenças Autoimunes do Sistema Nervoso/enzimologia , Doenças Autoimunes do Sistema Nervoso/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Magnésio , Camundongos , Mutação , Malformações do Sistema Nervoso/enzimologia , Malformações do Sistema Nervoso/genética , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Estrutura Quaternária de Proteína , Ribonuclease H/genética , Homologia Estrutural de Proteína , Especificidade por Substrato , Thermotoga maritima/enzimologia
9.
EMBO J ; 27(7): 1172-81, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18337749

RESUMO

Human RNase H1 contains an N-terminal domain known as dsRHbd for binding both dsRNA and RNA/DNA hybrid. We find that dsRHbd binds preferentially to RNA/DNA hybrids by over 25-fold and rename it as hybrid binding domain (HBD). The crystal structure of HBD complexed with a 12 bp RNA/DNA hybrid reveals that the RNA strand is recognized by a protein loop, which forms hydrogen bonds with the 2'-OH groups. The DNA interface is highly specific and contains polar residues that interact with the phosphate groups and an aromatic patch that appears selective for binding deoxyriboses. HBD is unique relative to non-sequence-specific dsDNA- and dsRNA-binding domains because it does not use positive dipoles of alpha-helices for nucleic acid binding. Characterization of full-length enzymes with defective HBDs indicates that this domain dramatically enhances both the specific activity and processivity of RNase H1. Similar activity enhancement by small substrate-binding domains linked to the catalytic domain likely occurs in other nucleic acid enzymes.


Assuntos
DNA/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Sequência de Aminoácidos , Animais , Pareamento de Bases , Cristalografia por Raios X , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
10.
Methods Mol Biol ; 2528: 91-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704187

RESUMO

RNase H1 has become an essential tool to uncover the physiological and pathological roles of R-loops, three-stranded structures consisting of and RNA-DNA hybrid opposite to a single DNA strand (ssDNA). RNase H1 degrades the RNA portion of the R-loops returning the two DNA strands to double-stranded form (dsDNA). Overexpression of RNase H1 in different systems has helped to address the questions of where R-loops are located, their abundance, and mechanisms of formation, stability, and degradation. In this chapter we review multiple studies that used RNase H1 as an instrument to investigate R-loops multiple functions and their relevance in health and diseases.


Assuntos
Estruturas R-Loop , Ribonuclease H , DNA/metabolismo , RNA/metabolismo , Ribonuclease H/metabolismo
11.
Nucleic Acids Res ; 37(1): 96-110, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015152

RESUMO

Eukaryotic RNase H2 is a heterotrimeric enzyme. Here, we show that the biochemical composition and stoichiometry of the human RNase H2 complex is consistent with the properties previously deduced from genetic studies. The catalytic subunit of eukaryotic RNase H2, RNASEH2A, is well conserved and similar to the monomeric prokaryotic RNase HII. In contrast, the RNASEH2B and RNASEH2C subunits from human and Saccharomyces cerevisiae share very little homology, although they both form soluble B/C complexes that may serve as a nucleation site for the addition of RNASEH2A to form an active RNase H2, or for interactions with other proteins to support different functions. The RNASEH2B subunit has a PIP-box and confers PCNA binding to human RNase H2. Unlike Escherichia coli RNase HII, eukaryotic RNase H2 acts processively and hydrolyzes a variety of RNA/DNA hybrids with similar efficiencies, suggesting multiple cellular substrates. Moreover, of five analyzed mutations in human RNASEH2B and RNASEH2C linked to Aicardi-Goutières Syndrome (AGS), only one, R69W in the RNASEH2C protein, exhibits a significant reduction in specific activity, revealing a role for the C subunit in enzymatic activity. Near-normal activity of four AGS-related mutant enzymes was unexpected in light of their predicted impairment causing the AGS phenotype.


Assuntos
Ribonuclease H/metabolismo , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/genética , Teste de Complementação Genética , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Doenças do Sistema Nervoso/genética , Poli A/metabolismo , Poli T/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribonuclease H/química , Ribonuclease H/genética , Síndrome
12.
DNA Repair (Amst) ; 84: 102736, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31761672

RESUMO

Eukaryotic RNases H2 have dual functions in initiating the removal of ribonucleoside monophosphates (rNMPs) incorporated by DNA polymerases during DNA synthesis and in cleaving the RNA moiety of RNA/DNA hybrids formed during transcription and retrotransposition. The other major cellular RNase H, RNase H1, shares the hybrid processing activity, but not all substrates. After RNase H2 incision at the rNMPs in DNA the Ribonucleotide Excision Repair (RER) pathway completes the removal, restoring dsDNA. The development of the RNase H2-RED (Ribonucleotide Excision Defective) mutant enzyme, which can process RNA/DNA hybrids but is unable to cleave rNMPs embedded in DNA has unlinked the two activities and illuminated the roles of RNase H2 in cellular metabolism. Studies mostly in Saccharomyces cerevisiae, have shown both activities of RNase H2 are necessary to maintain genome integrity and that RNase H1 and H2 have overlapping as well as distinct RNA/DNA hybrid substrates. In mouse RNase H2-RED confirmed that rNMPs in DNA during embryogenesis induce lethality in a p53-dependent DNA damage response. In mammalian cell cultures, RNase H2-RED helped identifying DNA lesions produced by Top1 cleavage at rNMPs and led to determine that RNase H2 participates in the retrotransposition of LINE-1 elements. In this review, we summarize the studies and conclusions reached by utilization of RNase H2-RED enzyme in different model systems.


Assuntos
Reparo do DNA , Ribonuclease H/metabolismo , Animais , Humanos , Ribonuclease H/química , Ribonuclease H/genética , Ribonucleotídeos/genética
13.
Cell Rep ; 25(5): 1135-1145.e5, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380406

RESUMO

RNase H2 has two distinct functions: initiation of the ribonucleotide excision repair (RER) pathway by cleaving ribonucleotides (rNMPs) incorporated during DNA replication and processing the RNA portion of an R-loop formed during transcription. An RNase H2 mutant lacking RER activity but supporting R-loop removal revealed that rNMPs in DNA initiate p53-dependent DNA damage response and early embryonic arrest in mouse. However, an RNase H2 AGS-related mutant with residual RER activity develops to birth. Estimations of the number of rNMPs in DNA in these two mutants define a ribonucleotide threshold above which p53 induces apoptosis. Below the threshold, rNMPs in DNA trigger an innate immune response. Compound heterozygous cells, containing both defective enzymes, retain rNMPs above the threshold, indicative of competition for RER substrates between active and inactive enzymes, suggesting that patients with compound heterozygous mutations in RNASEH2 genes may not reflect the properties of recombinantly expressed proteins.


Assuntos
Desenvolvimento Embrionário , Mutação/genética , Ribonuclease H/genética , Ribonucleotídeos/metabolismo , Animais , DNA/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Perda do Embrião/patologia , Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interferons/farmacologia , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas Mutantes/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Ribonuclease H/metabolismo , Proteína Supressora de Tumor p53/metabolismo
14.
Nucleic Acids Res ; 33(7): 2166-75, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15831789

RESUMO

Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA-DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA-DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication.


Assuntos
DNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Sequência de Aminoácidos , Animais , Dimerização , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/enzimologia , Humanos , Camundongos , Dados de Sequência Molecular , Poli A/metabolismo , Poli T/metabolismo , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/metabolismo , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície
15.
J Mol Biol ; 429(21): 3255-3263, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28065739

RESUMO

R-loops, three-strand structures consisting of mRNA hybridized to the complementary DNA and a single-stranded DNA loop, are formed in switch regions on the heavy-chain immunoglobulin locus. To determine if R-loops have a direct effect on any of the steps involved in isotype switching, we generated a transgenic mouse that over-expressed RNase H1, an enzyme that cleaves the RNA of RNA/DNA hybrids in B cells. R-loops in the switch µ region were depleted by 70% in ex vivo activated splenic B cells. Frequencies of isotype switching to IgG1, IgG2b, IgG2c, and IgG3 were the same as C57BL/6 control cells. However, somatic hypermutation was increased specifically on the transcribed strand from µ-γ joins, indicating that R-loops limit activation-induced (cytosine) deaminase access to the transcribed DNA strand. Our data suggest that, in the normal G+C-rich context of mammalian class switch recombination regions, R-loops are obligatory intermediates. Processing of the R-loops is needed to remove RNA allowing activation-induced (cytosine) deaminase to promote somatic hypermutation on both DNA strands to generate double-strand DNA breaks for efficient class switch recombination. One of the two cellular RNases H may assist in this process.


Assuntos
Linfócitos B/metabolismo , Citidina Desaminase/metabolismo , Switching de Imunoglobulina/genética , Isotipos de Imunoglobulinas/genética , Conformação de Ácido Nucleico , Recombinação Genética , Ribonuclease H/fisiologia , Animais , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hipermutação Somática de Imunoglobulina
16.
J Exp Med ; 213(3): 329-36, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26880576

RESUMO

The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2a(G37S/G37S) (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS-STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso/imunologia , Imunidade Inata , Proteínas de Membrana/metabolismo , Mutação/genética , Malformações do Sistema Nervoso/imunologia , Nucleotidiltransferases/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Animais , Doenças Autoimunes do Sistema Nervoso/genética , Domínio Catalítico , Células Cultivadas , Cruzamentos Genéticos , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Homozigoto , Humanos , Interferons/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Camundongos , Malformações do Sistema Nervoso/genética , Fenótipo , Transdução de Sinais
17.
DNA Repair (Amst) ; 35: 1-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26340535

RESUMO

DNA polymerase η (pol η) is best characterized for its ability to perform accurate and efficient translesion DNA synthesis (TLS) through cyclobutane pyrimidine dimers (CPDs). To ensure accurate bypass the polymerase is not only required to select the correct base, but also discriminate between NTPs and dNTPs. Most DNA polymerases have a conserved "steric gate" residue which functions to prevent incorporation of NMPs during DNA synthesis. Here, we demonstrate that the Phe35 residue of Saccharomyces cerevisiae pol η functions as a steric gate to limit the use of ribonucleotides during polymerization both in vitro and in vivo. Unlike the related pol ι enzyme, wild-type pol η does not readily incorporate NMPs in vitro. In contrast, a pol η F35A mutant incorporates NMPs on both damaged and undamaged DNA in vitro with a high degree of base selectivity. An S.cerevisiae strain expressing pol η F35A (rad30-F35A) that is also deficient for nucleotide excision repair (rad1Δ) and the TLS polymerase, pol ζ (rev3Δ), is extremely sensitive to UV-light. The sensitivity is due, in part, to RNase H2 activity, as an isogenic rnh201Δ strain is roughly 50-fold more UV-resistant than its RNH201(+) counterpart. Interestingly the rad1Δ rev3Δ rad30-F35A rnh201Δ strain exhibits a significant increase in the extent of spontaneous mutagenesis with a spectrum dominated by 1bp deletions at runs of template Ts. We hypothesize that the increased mutagenesis is due to rA incorporation at these sites and that the short poly rA tract is subsequently repaired in an error-prone manner by a novel repair pathway that is specifically targeted to polyribonucleotide tracks. These data indicate that under certain conditions, pol η can compete with the cell's replicases and gain access to undamaged genomic DNA. Such observations are consistent with a role for pol η in replicating common fragile sites (CFS) in human cells.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/química , Instabilidade Genômica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Alanina/química , Alanina/genética , Substituição de Aminoácidos , Sequência de Bases , Sequência Conservada , Replicação do DNA , DNA Fúngico/química , DNA Fúngico/genética , DNA Polimerase Dirigida por DNA/genética , Dados de Sequência Molecular , Mutagênese , Mutação , Fenilalanina/química , Fenilalanina/genética , Polirribonucleotídeos/metabolismo , Ribonucleotídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Raios Ultravioleta
19.
Mol Cell Biol ; 30(21): 5123-34, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20823270

RESUMO

RNase H1 in mammalian cells is present in nuclei and mitochondria. Its absence in mitochondria results in embryonic lethality due to the failure to amplify mitochondrial DNA (mtDNA). Dual localization to mitochondria and nuclei results from differential translation initiation at two in-frame AUGs (M1 and M27) of a single mRNA. Here we show that expression levels of the two isoforms depend on the efficiency of translation initiation at each AUG codon and on the presence of a short upstream open reading frame (uORF) resulting in the mitochondrial isoform being about 10% as abundant as the nuclear form. Translation initiation at the M1 AUG is restricted by the uORF, while expression of the nuclear isoform requires reinitiation of ribosomes at the M27 AUG after termination of uORF translation or new initiation by ribosomes skipping the uORF and the M1 AUG. Such translational organization of RNase H1 allows tight control of expression of RNase H1 in mitochondria, where its excess or absence can lead to cell death, without affecting the expression of the nuclear RNase H1.


Assuntos
Códon/genética , Fases de Leitura Aberta/genética , Ribonuclease H/genética , Ribonuclease H/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/enzimologia , DNA Mitocondrial/genética , Humanos , Técnicas In Vitro , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/enzimologia , Camundongos , Mitocôndrias/enzimologia , Modelos Biológicos , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonuclease H/química , Homologia de Sequência de Aminoácidos
20.
FEBS J ; 276(6): 1494-505, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19228196

RESUMO

Ribonucleases H are enzymes that cleave the RNA of RNA/DNA hybrids that form during replication and repair and which could lead to DNA instability if they were not processed. There are two main types of RNase H, and at least one of them is present in most organisms. Eukaryotic RNases H are larger and more complex than their prokaryotic counterparts. Eukaryotic RNase H1 has acquired a hybrid binding domain that confers processivity and affinity for the substrate, whereas eukaryotic RNase H2 is composed of three different proteins: the catalytic subunit (2A), similar to the monomeric prokaryotic RNase HII, and two other subunits (2B and 2C) that have no prokaryotic counterparts and as yet unknown functions, but that are necessary for catalysis. In this minireview, we discuss some of the most recent findings on eukaryotic RNases H1 and H2, focusing on the structural data on complexes between human RNase H1 and RNA/DNA hybrids that had provided great detail of how the hybrid binding- and RNase H-domains recognize and cleave the RNA strand of the hybrid substrates. We also describe the progress made in understanding the in vivo function of eukaryotic RNases H. Although prokayotes and some single-cell eukaryotes do not require RNases H for viability, in higher eukaryotes RNases H are essential. Rnaseh1 null mice arrest development around E8.5 because RNase H1 is necessary during embryogenesis for mitochondrial DNA replication. Mutations in any of the three subunits of human RNase H2 cause Aicardi-Goutières syndrome, a human neurological disorder with devastating consequences.


Assuntos
Ribonuclease H/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Ribonuclease H/química , Ribonuclease H/genética , Saccharomyces cerevisiae/enzimologia , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA