Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 73(6): 2397-2410, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32761972

RESUMO

BACKGROUND AND AIMS: Following liver injury, mast cells (MCs) migrate into the liver and are activated in patients with cholestasis. Inhibition of MC mediators decreases ductular reaction (DR) and liver fibrosis. Transforming growth factor beta 1 (TGF-ß1) contributes to fibrosis and promotes liver disease. Our aim was to demonstrate that reintroduction of MCs induces cholestatic injury through TGF-ß1. APPROACH AND RESULTS: Wild-type, KitW-sh (MC-deficient), and multidrug resistance transporter 2/ABC transporter B family member 2 knockout mice lacking l-histidine decarboxylase were injected with vehicle or PKH26-tagged murine MCs pretreated with 0.01% dimethyl sulfoxide (DMSO) or the TGF-ß1 receptor inhibitor (TGF-ßRi), LY2109761 (10 µM) 3 days before sacrifice. Hepatic damage was assessed by hematoxylin and eosin (H&E) and serum chemistry. Injected MCs were detected in liver, spleen, and lung by immunofluorescence (IF). DR was measured by cytokeratin 19 (CK-19) immunohistochemistry and F4/80 staining coupled with real-time quantitative PCR (qPCR) for interleukin (IL)-1ß, IL-33, and F4/80; biliary senescence was evaluated by IF or qPCR for p16, p18, and p21. Fibrosis was evaluated by sirius red/fast green staining and IF for synaptophysin 9 (SYP-9), desmin, and alpha smooth muscle actin (α-SMA). TGF-ß1 secretion/expression was measured by enzyme immunoassay and qPCR. Angiogenesis was detected by IF for von Willebrand factor and vascular endothelial growth factor C qPCR. In vitro, MC-TGF-ß1 expression/secretion were measured after TGF-ßRi treatment; conditioned medium was collected. Cholangiocytes and hepatic stellate cells (HSCs) were treated with MC-conditioned medium, and biliary proliferation/senescence was measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and qPCR; HSC activation evaluated for α-SMA, SYP-9, and collagen type-1a expression. MC injection recapitulates cholestatic liver injury characterized by increased DR, fibrosis/TGF-ß1 secretion, and angiogenesis. Injection of MC-TGF-ßRi reversed these parameters. In vitro, MCs induce biliary proliferation/senescence and HSC activation that was reversed with MCs lacking TGF-ß1. CONCLUSIONS: Our study demonstrates that reintroduction of MCs mimics cholestatic liver injury and that MC-derived TGF-ß1 may be a target in chronic cholestatic liver disease.


Assuntos
Actinas/metabolismo , Colestase Intra-Hepática/metabolismo , Cirrose Hepática , Fígado/patologia , Mastócitos , Fator de Crescimento Transformador beta1 , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Ensaios de Migração Celular , Proliferação de Células , Senescência Celular , Descoberta de Drogas , Células Estreladas do Fígado , Histamina/sangue , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
2.
Antonie Van Leeuwenhoek ; 115(1): 89-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34797466

RESUMO

Bacillus thuringiensis is the major bioinsecticide worldwide produced due to the Cry protein activity. Several studies have been done to improve the cost-productivity relation. The neutral protease A (NprA) is the major extracellular protein massively produced during the stationary phase by this bacterium, contributing to the Cry proteins' degradation. Also, the deletion of aprA and nprA genes enhanced the yield of Cry protein, stabilizing it. Therefore, to increase Cry production, one possibility is to degrade the NprA protease in the culture media. In the present study, proteinase K was used to hydrolyze the NprA to increase Cry production. Proteinase K was added during the exponential growth of B. thuringiensis culture. The bacilli and endospores were measured along all culture, while the Cry protein was measured at the end of the culture. The addition of PK affects the bacilli and spore kinetics positively but negatively to the Cry protein (there is no Cry protein detection). Therefore, the gene expression of the cry1Ac, nprX, nprA, and spo0A was measured. The expression of each gene was followed along all culture. Results demonstrated that PK alters both the transcriptional levels and the expression order of the genes.


Assuntos
Bacillus thuringiensis , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Endopeptidase K , Endotoxinas/genética , Proteínas Hemolisinas/genética , Transcrição Gênica
3.
Am J Pathol ; 190(5): 1018-1029, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142732

RESUMO

Histamine binds to one of the four G-protein-coupled receptors expressed by large cholangiocytes and increases large cholangiocyte proliferation via histamine-2 receptor (H2HR), which is increased in patients with primary sclerosing cholangitis (PSC). Ranitidine decreases liver damage in Mdr2-/- (ATP binding cassette subfamily B member 4 null) mice. We targeted hepatic H2HR in Mdr2-/- mice using vivo-morpholino. Wild-type and Mdr2-/- mice were treated with mismatch or H2HR vivo-morpholino by tail vein injection for 1 week. Liver damage, mast cell (MC) activation, biliary H2HR, and histamine serum levels were studied. MC markers were determined by quantitative real-time PCR for chymase and c-kit. Intrahepatic biliary mass was detected by cytokeratin-19 and F4/80 to evaluate inflammation. Biliary senescence was determined by immunofluorescence and senescence-associated ß-galactosidase staining. Hepatic fibrosis was evaluated by staining for desmin, Sirius Red/Fast Green, and vimentin. Immunofluorescence for transforming growth factor-ß1, vascular endothelial growth factor-A/C, and cAMP/ERK expression was performed. Transforming growth factor-ß1 and vascular endothelial growth factor-A secretion was measured in serum and/or cholangiocyte supernatant. Treatment with H2HR vivo-morpholino in Mdr2-/--mice decreased hepatic damage; H2HR protein expression and MC presence or activation; large intrahepatic bile duct mass, inflammation and senescence; and fibrosis, angiogenesis, and cAMP/phospho-ERK expression. Inhibition of H2HR signaling ameliorates large ductal PSC-induced damage. The H2HR axis may be targeted in treating PSC.


Assuntos
Ductos Biliares/metabolismo , Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Receptores Histamínicos H2/metabolismo , Animais , Ductos Biliares/patologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Morfolinos/farmacologia , Receptores Histamínicos H2/genética
4.
Curr Genet ; 64(1): 215-222, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28624879

RESUMO

The non-appropriate conditions faced by nutritionally stressed bacteria propitiate error-prone repair events underlying stationary-phase- or stress-associated mutagenesis (SPM). The genetic and molecular mechanisms involved in SPM have been deeply studied but the biochemical aspects of this process have so far been less explored. Previous evidence showed that under conditions of nutritional stress, non-dividing cells of strain B. subtilis YB955 overexpressing ribonucleotide reductase (RNR) exhibited a strong propensity to generate true reversions in the hisC952 (amber), metB5 (ochre) and leuC425 (missense) mutant alleles. To further advance our knowledge on the metabolic conditions underlying this hypermutagenic phenotype, a high-throughput LC-MS/MS proteomic analysis was performed in non-dividing cells of an amino acid-starved strain, deficient for NrdR, the RNR repressor. Compared with the parental strain, the level of 57 proteins was found to increase and of 80 decreases in the NrdR-deficient strain. The proteomic analysis revealed an altered content in proteins associated with the stringent response, nucleotide metabolism, DNA repair, and cell signaling in amino acid-starved cells of the ∆nrdR strain. Overall, our results revealed that amino acid-starved cells of strain B. subtilis ∆nrdR that escape from growth-limiting conditions exhibit a complex proteomic pattern reminiscent of a disturbed metabolism. Future experiments aimed to understand the consequences of disrupting the cell signaling pathways unveiled in this study, will advance our knowledge on the genetic adaptations deployed by bacteria to escape from growth-limiting environments.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteoma , Proteômica , Ribonucleotídeo Redutases/genética , Aminoácidos/metabolismo , Cromatografia Líquida , Mutagênese , Nucleotídeos/metabolismo , Proteômica/métodos , Estabilidade de RNA , Estresse Fisiológico , Espectrometria de Massas em Tandem
5.
J Bacteriol ; 199(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920297

RESUMO

The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-ß-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H2O2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. IMPORTANCE: Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions.


Assuntos
Bacillus subtilis/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Estresse Oxidativo/fisiologia , Ribonucleotídeo Redutases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Mutação , Ribonucleotídeo Redutases/genética
6.
Placenta ; 146: 17-24, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160599

RESUMO

INTRODUCTION: The placenta provides nutrients to the fetus, and it has protective effects against harmful substances. Unhealthy maternal diets and toxic agents might increase free radical (FR) production. Elevated FR levels are associated with a high risk of oxidative stress, which may cause DNA damage. DNA might be oxidized in the placenta, occasionally affecting its methylation profile due to 8-hidroxy-2'-deoxyguanosine formation. METHODS: This study assessed 130 mothers and their children. The maternal's nutritional patterns were determined using the Food Frequency Questionnaire. Information on smoking and alcohol consumption was collected during the medical examination. Data on placental DNA were obtained to determine the MTHFR 677C/T genotype and the proportion of placental DNA methylation (pDNAm). RESULTS: Consumption of vitamins and folic acid was above 85%. The pDNAm was found to be correlated with gestational age and coffee intake. Mothers with a smoking history had a low pDNAm. Placentas with the TT genotype had a higher but not significant pDNAm. In the placentas with the CC/CT genotype, the pDNAm was positively associated with carbohydrate and biotin intake. However, the TT genotype was negatively associated with folate and vegetable intake. DISCUSSION: The pDNAm was positively associated with coffee intake, but not with macro-, and micronutrient intake. However, it was negatively associated with cigarette smoking. The placentas with the CC/CT genotype had a lower pDNAm than those with the TT genotype. In the placentas with the CC/CT or TT genotype, methylation was positively, and negatively associated with micro- or macronutrients, respectively.


Assuntos
Metilação de DNA , Placenta , Criança , Humanos , Feminino , Gravidez , Café , Dieta , Genótipo , Ácido Fólico , DNA , Fumar/efeitos adversos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética
7.
J Microbiol ; 61(12): 1043-1062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38114662

RESUMO

Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.


Assuntos
Mucor , Fatores de Transcrição , Fatores de Transcrição/genética , Virulência/genética , Estresse Oxidativo , Proteínas Fúngicas/genética
8.
J Fungi (Basel) ; 9(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38132728

RESUMO

This study analyzed the role of blood serum in enhancing the mitochondrial metabolism and virulence of Mucorales through rhizoferrin secretion. We observed that the spores of clinically relevant Mucorales produced in the presence of serum exhibited higher virulence in a heterologous infection model of Galleria mellonella. Cell-free supernatants of the culture broth obtained from spores produced in serum showed increased toxicity against Caenorhabditis elegans, which was linked with the enhanced secretion of rhizoferrin. Spores from Mucoralean species produced or germinated in serum showed increased respiration rates and reactive oxygen species levels. The addition of non-lethal concentrations of potassium cyanide and N-acetylcysteine during the aerobic or anaerobic growth of Mucorales decreased the toxicity of the cell-free supernatants of the culture broth, suggesting that mitochondrial metabolism is important for serum-induced virulence. In support of this hypothesis, a mutant strain of Mucor lusitanicus that lacks fermentation and solely relies on oxidative metabolism exhibited virulence levels comparable to those of the wild-type strain under serum-induced conditions. Contrary to the lower virulence observed, even in the serum, the ADP-ribosylation factor-like 2 deletion strain exhibited decreased mitochondrial activity. Moreover, spores produced in the serum of M. lusitanicus and Rhizopus arrhizus that grew in the presence of a mitophagy inducer showed low virulence. These results suggest that serum-induced mitochondrial activity increases rhizoferrin levels, making Mucorales more virulent.

9.
Sci Rep ; 12(1): 10649, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739200

RESUMO

Mucormycosis is a fungal infection caused by Mucorales, with a high mortality rate. However, only a few virulence factors have been described in these organisms. This study showed that deletion of rfs, which encodes the enzyme for the biosynthesis of rhizoferrin, a siderophore, in Mucor lusitanicus, led to a lower virulence in diabetic mice and nematodes. Upregulation of rfs correlated with the increased toxicity of the cell-free supernatants of the culture broth (SS) obtained under growing conditions that favor oxidative metabolism, such as low glucose levels or the presence of H2O2 in the culture, suggesting that oxidative metabolism enhances virulence through rhizoferrin production. Meanwhile, growing M. lusitanicus in the presence of potassium cyanide, N-acetylcysteine, a higher concentration of glucose, or exogenous cAMP, or the deletion of the gene encoding the regulatory subunit of PKA (pkaR1), correlated with a decrease in the toxicity of SS, downregulation of rfs, and reduction in rhizoferrin production. These observations indicate the involvement of the cAMP-PKA pathway in the regulation of rhizoferrin production and virulence in M. lusitanicus. Moreover, rfs upregulation was observed upon macrophage interaction or during infection with spores in mice, suggesting a pivotal role of rfs in M. lusitanicus infection.


Assuntos
Diabetes Mellitus Experimental , Mucor , Animais , Compostos Férricos , Glucose , Peróxido de Hidrogênio , Camundongos , Mucor/genética , Sideróforos , Virulência/genética
10.
Biomolecules ; 10(2)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075023

RESUMO

Evidence suggests that histone deacetylases (HDACs) inhibitors could be used as an effective treatment for some psychiatric and neurological conditions such as depression, anxiety and age-related cognitive decline. However, non-specific HDAC inhibiting compounds have a clear disadvantage regarding their efficacy and safety, thus the need to develop more selective ones. The present study evaluated the toxicity, the capacity to inhibit HDAC activity and antidepressant-like activity of three recently described class I HDAC inhibitors IN01, IN04 and IN14, using A.salina toxicity test, in vitro fluorometric HDAC activity assay and forced-swimming test, respectively. Our data show that IN14 possesses a better profile than the other two. Therefore, the pro-cognitive and antidepressant effects of IN14 were evaluated. In the forced-swimming test model of depression, intraperitoneal administration of IN14 (100 mg/Kg/day) for five days decreased immobility, a putative marker of behavioral despair, significantly more than tricyclic antidepressant desipramine, while also increasing climbing behavior, a putative marker of motivational behavior. On the other hand, IN14 left the retention latency in the elevated T-maze unaltered. These results suggest that novel HDAC class I inhibitor IN14 may represent a promising new antidepressant with low toxicity and encourages further studies on this compound.


Assuntos
Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Animais , Antidepressivos/farmacologia , Histona Desacetilases/metabolismo , Masculino , Camundongos
11.
Bio Protoc ; 7(23): e2634, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34595302

RESUMO

Elucidating how a population of non-growing bacteria generates mutations improves our understanding of phenomena like antibiotic resistance, bacterial pathogenesis, genetic diversity and evolution. To evaluate mutations that occur in nutritionally stressed non-growing bacteria, we have employed the strain B. subtilis YB955, which measures the reversions rates to the chromosomal auxotrophies hisC952, metB5 and leuC427 (Sung and Yasbin, 2002). This gain-of-function system has successfully allowed establishing the role played by repair systems and transcriptional factors in stress-associated mutagenesis (SPM) (Barajas- Ornelas et al., 2014 ; Gómez- Marroquín et al., 2016 ). In a recent study (Castro- Cerritos et al., 2017 ), it was found that Ribonucleotide Reductase (RNR) was necessary for SPM; this enzyme is essential in this bacterium. We engineered a conditional mutant of strain B. subtilis YB955 in which expression of the nrdEF operon was modulated by isopropyl-ß-D-thiogalactopyranoside (IPTG) (Castro- Cerritos et al., 2017 ). The conditions to determine mutation frequencies conferring amino acid prototrophy in three genes (hisC952, metB5, leuC427) under nutritional stress in this conditional mutant are detailed here. This technique could be used to evaluate the participation of essential genes in the mutagenic processes occurring in stressed B. subtilis cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA