Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 314(1): E53-E65, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29066461

RESUMO

The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl-]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Resistência à Insulina/genética , Proteínas Serina-Treonina Quinases/genética , Aumento de Peso/genética , Animais , Células Cultivadas , Gorduras na Dieta/farmacologia , Metabolismo Energético/efeitos dos fármacos , Técnicas de Introdução de Genes , Inativação Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/fisiologia , Aumento de Peso/efeitos dos fármacos
2.
Can J Physiol Pharmacol ; 94(6): 634-42, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27050838

RESUMO

Myocardial infarction (MI) has been associated with an inflammatory response and a rise in TNF-α, interleukin (IL)-1ß, and IL-6. Peroxisome proliferator-activated receptors (PPARs) promote a decreased expression of inflammatory molecules. We aimed to study whether PPAR stimulation by clofibrate decreases inflammation and reduces infarct size in rats with MI. Male Wistar rats were randomized into 3 groups: control, MI + vehicle, and MI + clofibrate (100 mg/kg). Treatment was administered for 3 consecutive days, previous to 2 h of MI. MI induced an increase in protein expression, mRNA content, and enzymatic activity of inducible nitric oxide synthase (iNOS). Additionally, MI incited an increased expression of matrix metalloproteinase (MMP)-2 and MMP-9, intercellular adhesion molecule (ICAM)-1, and IL-6. MI also elevated the nuclear content of nuclear factor-κB (NF-κB) and decreased IκB, both in myocyte nuclei and cytosol. Clofibrate treatment prevented MI-induced changes in iNOS, MMP-2 and MMP-9, ICAM-1, IL-6, NF-κB, and IκB. Infarct size was smaller in clofibrate-treated rats compared to MI-vehicle animals. In silico analysis exhibited 3 motifs shared by genes from renin-angiotensin system, PPARα, iNOS, MMP-2 and MMP-9, ICAM-1, and VCAM-1, suggesting a cross regulation. In conclusion, PPARα-stimulation prevents overexpression of pro-inflammatory molecules and preserves viability in an experimental model of acute MI.


Assuntos
Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Mediadores da Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , PPAR alfa/biossíntese , Animais , Clofibrato/farmacologia , Clofibrato/uso terapêutico , Regulação da Expressão Gênica , Masculino , Infarto do Miocárdio/tratamento farmacológico , PPAR alfa/genética , Distribuição Aleatória , Ratos , Ratos Wistar
3.
Proc Natl Acad Sci U S A ; 109(20): 7929-34, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22550170

RESUMO

Pseudohypoaldosteronism type II is a salt-sensitive form of hypertension with hyperkalemia in humans caused by mutations in the with-no-lysine kinase 4 (WNK4). Several studies have shown that WNK4 modulates the activity of the renal Na(+)Cl(-) cotransporter, NCC. Because the renal consequences of WNK4 carrying pseudoaldosteronism type II mutations resemble the response to intravascular volume depletion (promotion of salt reabsorption without K(+) secretion), a condition that is associated with high angiotensin II (AngII) levels, it has been proposed that AngII signaling might affect WNK4 modulation of the NCC. In Xenopus laevis oocytes, WNK4 is required for modulation of NCC activity by AngII. To demonstrate that WNK4 is required in the AngII-mediated regulation of NCC in vivo, we used a total WNK4-knockout mouse strain (WNK4(-/-)). WNK4 mRNA and protein expression were absent in WNK4(-/-) mice, which exhibited a mild Gitelman-like syndrome, with normal blood pressure, increased plasma renin activity, and reduced NCC expression and phosphorylation at T-58. Immunohistochemistry revealed normal morphology of the distal convoluted tubule with reduced NCC expression. Low-salt diet or infusion of AngII for 4 d induced phosphorylation of STE20/SPS1-related proline/alanine-rich kinase (SPAK) and of NCC at S-383 and T-58, respectively, in WNK4(+/+) but not WNK4(-/-) mice. Thus, the absence of WNK4 in vivo precludes NCC and SPAK phosphorylation promoted by a low-salt diet or AngII infusion, suggesting that AngII action on the NCC occurs via a WNK4-SPAK-dependent signaling pathway. Additionally, stimulation of aldosterone secretion by AngII, but not by a high-K(+) diet, was impaired in WNK4(-/-) mice.


Assuntos
Angiotensina II/metabolismo , Rim/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pseudo-Hipoaldosteronismo/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Proteínas de Xenopus/metabolismo , Aldosterona/metabolismo , Angiotensina II/administração & dosagem , Animais , Pressão Sanguínea , Primers do DNA/genética , Dieta Hipossódica , Immunoblotting , Imuno-Histoquímica , Bombas de Infusão Implantáveis , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Reação em Cadeia da Polimerase em Tempo Real , Renina/sangue , Proteínas de Xenopus/genética
4.
Am J Physiol Renal Physiol ; 306(12): F1507-19, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24761002

RESUMO

Modulation of Na(+)-Cl(-) cotransporter (NCC) activity is essential to adjust K(+) excretion in the face of changes in dietary K(+) intake. We used previously characterized genetic mouse models to assess the role of Ste20-related proline-alanine-rich kinase (SPAK) and with-no-lysine kinase (WNK)4 in the modulation of NCC by K(+) diets. SPAK knockin and WNK4 knockout mice were placed on normal-, low-, or high-K(+)-citrate diets for 4 days. The low-K(+) diet decreased and high-K(+) diet increased plasma aldosterone levels, but both diets were associated with increased phosphorylation of NCC (phospho-NCC, Thr(44)/Thr(48)/Thr(53)) and phosphorylation of SPAK/oxidative stress responsive kinase 1 (phospho-SPAK/OSR1, Ser(383)/Ser(325)). The effect of the low-K(+) diet on SPAK phosphorylation persisted in WNK4 knockout and SPAK knockin mice, whereas the effects of ANG II on NCC and SPAK were lost in both mouse colonies. This suggests that for NCC activation by ANG II, integrity of the WNK4/SPAK pathway is required, whereas for the low-K(+) diet, SPAK phosphorylation occurred despite the absence of WNK4, suggesting the involvement of another WNK (WNK1 or WNK3). Additionally, because NCC activation also occurred in SPAK knockin mice, it is possible that loss of SPAK was compensated by OSR1. The positive effect of the high-K(+) diet was observed when the accompanying anion was citrate, whereas the high-KCl diet reduced NCC phosphorylation. However, the effect of the high-K(+)-citrate diet was aldosterone dependent, and neither metabolic alkalosis induced by bicarbonate, nor citrate administration in the absence of K(+) increased NCC phosphorylation, suggesting that it was not due to citrate-induced metabolic alkalosis. Thus, the accompanying anion might modulate the NCC response to the high-K(+) diet.


Assuntos
Potássio na Dieta/farmacologia , Transdução de Sinais/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/efeitos dos fármacos , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Aldosterona/metabolismo , Angiotensina II/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia
5.
Peptides ; 164: 171001, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990388

RESUMO

Hyperglycemia (HG) impairs the renin-angiotensin system (RAS), which may contribute to vascular dysfunction. Besides, hydrogen sulfide (H2S) exerts beneficial cardiovascular effects in metabolic diseases. Therefore, our study aimed to determine the effects of chronic administration of sodium hydrosulfide (NaHS; inorganic H2S donor) and DL-Propargylglycine [DL-PAG; cystathionine-×¥-lyase (CSE) inhibitor] on the RAS-mediated vascular responses impairments observed in thoracic aortas from male diabetic Wistar rats. For that purpose, neonatal rats were divided into two groups that received: 1) citrate buffer (n = 12) or 2) streptozotocin (STZ, 70 mg/kg; n = 48) on the third postnatal day. After 12 weeks, diabetic animals were divided into 4 subgroups (n = 12 each) that received daily i.p. injections during 4 weeks of: 1) non-treatment; 2) vehicle (PBS, 1 mL/kg); 3) NaHS (5.6 mg/kg); and 4) DL-PAG (10 mg/kg). After treatments (16 weeks), blood glucose, angiotensin-(1-7) [Ang-(1-7)], and angiotensin II (Ang II) levels, vascular responses to Ang-(1-7) and Ang II, and the expression of angiotensin AT1, AT2, and Mas receptors, angiotensin converting enzyme (ACE) and ACE type 2 (ACE2) were determined. HG induced: 1) increased blood glucose levels and expression of angiotensin II AT1 receptor; 2) impaired Ang-(1-7) and Ang II mediated vascular responses; 3) decreased angiotensin levels and expression of angiotensin II AT2 and angiotensin-(1-7) Mas receptors, and ACE2; and 4) no changes in ACE expression. Interestingly, NaHS, but not DL-PAG, reversed HG-induced impairments, except for blood glucose level changes. These results suggest that NaHS restores vascular function in streptozotocin-induced HG through RAS modulation.


Assuntos
Hiperglicemia , Sistema Renina-Angiotensina , Ratos , Masculino , Animais , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicemia , Estreptozocina/farmacologia , Ratos Wistar , Peptidil Dipeptidase A/metabolismo , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Angiotensina I/farmacologia
6.
J Cardiovasc Pharmacol ; 60(4): 323-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22691880

RESUMO

Peroxisome proliferator-activated receptors (PPAR) play a critical physiological role in energy homeostasis, in inflammation, and a protective role in cardiovascular function. We assessed the antioxidant effect of clofibrate-induced Peroxisome proliferator-activated receptor alpha (PPARα) stimulation on ischemic myocardium on myocardial morphology and hemodynamics. Male Wistar rats (300 g) were distributed into the following groups: (1) Sham, (2) myocardial ischemia vehicle treated (MI-V), and (3) myocardial ischemia clofibrate [100 mg/kg/ intraperitoneally) treated (MI-C). Reactive oxygen species (ROS) and lipid peroxidation increased in MI-V, whereas clofibrate prevented this effect. Superoxide dismutase (SOD)-1 and SOD-2 expression increased 4 times upon PPARα stimulation. SOD-1, SOD-2, and catalase activity also increased in response to clofibrate. eNOS mRNA and tetrahydrobiopterin increased in the MI-C group. Clofibrate was able to decrease Angiotensin II (AngII), AngII AT1-receptor, whereas Ang-(1-7) and AngII AT2-receptor expression increased. Assessment of myocardial morphology and cardiac function show that clofibrate improved histological features and hemodynamic parameters. Our results suggest that PPARα stimulation by clofibrate increases the antioxidant defense, leading to improved cardiac function.


Assuntos
Antioxidantes/farmacologia , Clofibrato/farmacologia , Isquemia Miocárdica/tratamento farmacológico , PPAR alfa/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Hemodinâmica/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Isquemia Miocárdica/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
7.
Life Sci ; 268: 119003, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417957

RESUMO

AIMS: This study attempts to elicit whether the level of hyperglycemia in an early stage of diabetic nephropathy changes the renal expression of claudins-2 and -5 and to determine the involvement of glucose-induced oxidative stress. MAIN METHODS: Streptozotocin-induced type-1 and type-2 diabetic (DM1, DM2)-rat models were used. At 14-week old, the rats were placed in metabolic cages to evaluate proteinuria, creatinine clearance, and electrolyte excretion. Proximal tubules and glomeruli were isolated and analyzed by Western blot and immunofluorescence. Renal oxidative stress and metalloproteinase activities were evaluated. KEY FINDINGS: We found that claudin-5 expression in glomeruli and claudin-2 expression in proximal tubules were significantly reduced in DM1 versus DM2 model, paralleling with higher proteinuria and loss of sodium and potassium reabsorption, increased malondialdehyde levels, but lower antioxidant capacity in both models. Enzymatic activity of MMP-2 and-9 was increased in both diabetic groups versus control being higher in DM1 than DM2, suggesting higher claudin's degradation. SIGNIFICANCE: The level of hyperglycemia determines the time-dependent progression to diabetic nephropathy; hyperglycemia-induced oxidative stress parallels an increase in metalloproteinases (MMPs) activities consequently affecting the integrity of claudin-2 and -5 in glomerulus and proximal tubule. Our results suggest that chronic high-glycemia levels in early stages of diabetic nephropathy decrease expression of claudins-2 and -5, increase oxidative stress, and induce MMP-activity faster than chronic middle-glycemia levels.


Assuntos
Claudina-2/metabolismo , Claudina-5/metabolismo , Nefropatias Diabéticas/metabolismo , Hiperglicemia/metabolismo , Rim/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/patologia , Rim/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Estresse Oxidativo , Ratos Wistar , Transportador 2 de Glucose-Sódio/metabolismo , Estreptozocina
8.
Eur J Pharmacol ; 685(1-3): 108-15, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22542661

RESUMO

Adequate production of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) requires eNOS coupling promoted by tetrahydrobiopterin (BH(4)). Under pathological conditions such as hypertension, BH(4) is diminished, avoiding eNOS coupling. When eNOS is "uncoupled", it yields a superoxide anion instead of NO. Peroxisome proliferator activated receptors (NR1C) are a family of nuclear receptors activated by ligand. Clofibrate, a member of a hypolipidemic class of drugs, acts by activating the alpha isoform of NR1C. To determine the participation of NR1C1 activation in BH(4) and dihydrobiopterin (BH(2)) metabolism and its implications on eNOS coupling in hypertension, we performed aortic coarctation (AoCo) at inter-renal level on male Wistar rats in order to have a hypertensive model. Rats were divided into the following groups: Sham+vehicle (Sham-V); AoCo+vehicle (AoCo-V); Sham+clofibrate (Sham-C), and AoCo+clofibrate (AoCo-C). Clofibrate (7 days) increased eNOS coupling in the AoCo-C group compared with AoCo-V. Clofibrate also recovered the BH(4):BH(2) ratio in control values and prevented the rise in superoxide anion production, lipoperoxidation, and reactive oxygen species production. In addition, clofibrate increased GTP cyclohydrolase-1 (GTPCH-1) protein expression, which is related with BH(4) recovered production. NR1C1 stimulation re-establishes eNOS coupling, apparently through recovering the BH(4):BH(2) equilibrium and diminishing oxidative stress. Both can contribute to high blood pressure attenuation in hypertension secondary to AoCo.


Assuntos
Clofibrato/farmacologia , Hipertensão/tratamento farmacológico , Hipolipemiantes/farmacologia , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Modelos Animais de Doenças , GTP Cicloidrolase/metabolismo , Hipertensão/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
9.
Pharmacol Rep ; 62(5): 874-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21098870

RESUMO

The aims of this study were to identify the effect of clofibrate administration in the development of high blood pressure secondary to aortic coarctation (AoCo) and to assess its effect on vascular reactivity. Three experimental groups of rats were used: sham-operated, aortic coarctated vehicle-treated (AoCo-V), and aortic coarctated clofibrate-treated (AoCo-C100). The rats were treated for seven days. Blood pressure was measured, and the vascular response to angiotensin II (AngII), norepinephrine (NE), and acetylcholine (ACh) were evaluated in aortic rings. The activity and expression of endothelial nitric oxide synthase (eNOS) was also evaluated. The major findings of this study include the following: AoCo induced a rise in blood pressure, and this effect was attenuated by clofibrate. The vascular response to AngII was higher in aortic rings from the AoCo-V group compared to the Sham-V or AoCo-C100 groups. ACh-elicited vasorelaxation was lower in the arteries of AoCo-V rats than Sham-V or AoCo-C100, while it was comparable between the Sham-V and AoCo-C100 groups. In every case, vasorelaxation was dependent on NO. However, the ACh-induced release of NO as well as NOS activity and expression were reduced in the arteries of AoCo-V rats. Clofibrate maintained normal NOS activity and increased eNOS expression. In conclusion, clofibrate administration attenuated the AoCo-induced rise in blood pressure by a mechanism that involves the participation of the NO system at both the NO synthesis and the eNOS protein expression levels. These events improved endothelial function, preserved normal vascular responses to both vasorelaxants and vasoconstrictors, and led to better blood pressure control.


Assuntos
Coartação Aórtica/complicações , Clofibrato/farmacologia , Hipertensão/prevenção & controle , Hipolipemiantes/farmacologia , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Animais , Clofibrato/uso terapêutico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Hipolipemiantes/uso terapêutico , Técnicas In Vitro , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Norepinefrina/farmacologia , Ratos , Ratos Wistar , Vasoconstritores/metabolismo , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA