Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Biomacromolecules ; 21(2): 910-920, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31940189

RESUMO

Multifunctional bioplastics have been prepared by amorphous reassembly of cellulose, hemicelluloses (xylan), and hydrolyzed lignin. For this, the biopolymers were dissolved in a trifluoroacetic acid-trifluoroacetic anhydride mixture and blended in different percentages, simulating those found in natural woods. Free-standing and flexible films were obtained after the complete evaporation of the solvents. By varying xylan and hydrolyzed lignin contents, the physical properties were easily tuned. In particular, higher proportions of hydrolyzed lignin improved hydrodynamics, oxygen barrier, grease resistance, antioxidant, and antibacterial properties, whereas a higher xylan content was related to more ductile mechanical behavior, comparable to synthetic and bio-based polymers commonly used for packaging applications. In addition, these bioplastics showed high biodegradation rates in seawater. Such new polymeric materials are presented as alternatives to common man-made petroleum-based plastics used for food packaging.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Lignina/química , Plásticos/química , Madeira/química , Xilanos/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Materiais Biocompatíveis/administração & dosagem , Celulose/administração & dosagem , Embalagem de Alimentos/métodos , Hidrólise , Lignina/administração & dosagem , Xilanos/administração & dosagem
2.
Nanomedicine ; 14(7): 2421-2432, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28552646

RESUMO

Piezoelectric films of poly(vinylidenedifluoride-trifluoroethylene) (P(VDF-TrFE)) and of P(VDF-TrFE)/boron nitride nanotubes (BNNTs) were prepared by cast-annealing and used for SaOS-2 osteoblast-like cell culture. Films were characterized in terms of surface and bulk features, and composite films demonstrated enhanced piezoresponse compared to plain polymeric films (d31 increased by ~80%). Osteogenic differentiation was evaluated in terms of calcium deposition, collagen I secretion, and transcriptional levels of marker genes (Alpl, Col1a1, Ibsp, and Sparc) in cells either exposed or not to ultrasounds (US); finally, a numerical model suggested that the induced voltage (~20-60 mV) is suitable for cell stimulation. Although preliminary, our results are extremely promising and encourage the use of piezoelectric P(VDF-TrFE)/BNNT films in bone tissue regeneration.


Assuntos
Compostos de Boro/farmacologia , Diferenciação Celular , Estimulação Elétrica , Nanotubos/química , Osteossarcoma/patologia , Polivinil/química , Ultrassonografia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Compostos de Boro/química , Sobrevivência Celular , Humanos , Nanotubos/efeitos da radiação , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Células Tumorais Cultivadas
3.
Nano Lett ; 16(10): 6154-6163, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27602602

RESUMO

Progress in the integration of nanocrystals with polymers has enabled the creation of materials for applications ranging from photovoltaics to biosensing. However, controlling the nanocrystal segregation and aggregation in the polymer phase remains a challenging task, especially because nanocrystals tend to form amorphous clusters inside the polymer matrix. Here, we present the ability of octapod-shaped particles to overcome their strong entropy-driven tendency to aggregate disorderly and form instead centipede-like linear arrays that are randomly oriented and fully embedded in polystyrene films upon controlled solvent evaporation. This behavior cannot be entirely described by short-range van der Waals interactions between the octapods in the polymer solution. An important role here is played by the increment of the viscosity of the medium during the evaporation of the solvent, which prevents disaggregation of the chains once they are formed. We show that increasing the octapod loading in the blends does not impact the length of the linear arrays beyond a critical length, while it favors instead chain demixing to form self-segregated regions of parallel interlocked chains. Our experiments evidence that softening of the polymer matrix by ex situ heating of the films induces a tail-to-tail coupling of the preformed chains and leads to the formation of longer linear structures of octapods, up to 2 µm long. The presence of 1D arrays of octapods in free-standing polystyrene films improves the creep response by a remarkable 37%, owing to an octapod pinning effect of the polymer matrix.

4.
Langmuir ; 31(22): 6072-7, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26017025

RESUMO

Grasslike compliant micro/nano crystals made of diarylethene (DAE) photochromic molecules are spontaneously formed on elastomer films after dipping them in a solution containing the photochromic molecules. The frictional forces of such micro- and nanofibrillar surfaces are reversibly tuned upon ultraviolet (UV) irradiation and dark storage cycles. This behavior is attributed to the Young's modulus variation of the single fibrils due to the photoisomerization process of the DAE molecules, as measured by advanced atomic force microscopy (AFM) techniques. In fact, a significant yet reversible decrease of the stiffness of the outer part of the fibrils in response to the UV light irradiation is demonstrated. The modification of the molecular structure of the fibrils influences their mechanical properties and affects the frictional behavior of the overall fibrillar surfaces. These findings provide the possibility to develop a system that controllably and accurately generates both low and high friction forces.


Assuntos
Etilenos/química , Fricção , Microscopia de Força Atômica , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Raios Ultravioleta
5.
Biotechnol Bioeng ; 111(10): 2107-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25073412

RESUMO

A theoretical model of the 3D scaffold internal architecture has been implemented with the aim to predict the effects of some geometrical parameters on total porosity, Young modulus, buckling resistance and permeability of the graft. This model has been adopted to produce porous poly-caprolacton based grafts for chondral tissue engineering applications, best tuning mechanical and functional features of the scaffolds. Material prototypes were produced with an internal geometry with parallel oriented cylindrical pores of 200 µm of radius (r) and an interpore distance/pores radius (d/r) ratio of 1. The scaffolds have been then extensively characterized; progenitor cells were then used to test their capability to support cartilaginous matrix deposition in an ectopic model. Scaffold prototypes fulfill both the chemical-physical requirements, in terms of Young's modulus and permeability, and the functional needs, such as surface area per volume and total porosity, for an enhanced cellular colonization and matrix deposition. Moreover, the grafts showed interesting chondrogenic potential in vivo, besides offering adequate mechanical performances in vitro, thus becoming a promising candidate for chondral tissues repair. Finally, a very good agreement was found between the prediction of the theoretical model and the experimental data. Many assumption of this theoretical model, hereby applied to cartilage, may be transposed to other tissue engineering applications, such as bone substitutes.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Bovinos , Células Cultivadas , Condrócitos/citologia , Módulo de Elasticidade , Teste de Materiais , Camundongos , Modelos Químicos , Porosidade , Células-Tronco/citologia
6.
Sci Rep ; 14(1): 10988, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744852

RESUMO

Investigating biodegradable and biocompatible materials for electronic applications can lead to tangible outcomes such as developing green-electronic devices and reducing the amount of e-waste. The proposed emulsion-based conducting ink formulation takes into consideration circular economy and green principles throughout the entire process, from the selection of materials to the production process. The ink is formulated using the biopolymer polylactic acid dissolved in a sustainable solvent mixed with water, along with conductive carbon nanotubes (CNTs) and silver flakes as fillers. Hybrid conductive fillers can lower the percolation threshold of the ink and the production costs, while maintaining excellent electrical properties. The coating formed after the deposition of the ink, undergoes isothermal treatment at different temperatures and durations to improve its adhesion and electrical properties. The coating's performance was evaluated by creating an eight-finger interdigitated sensor using a Voltera PCB printer. The sensor demonstrates exceptional performance when exposed to various loading and unloading pressures within the 0.2-500.0 kPa range. The results show a consistent correlation between the change in electrical resistance and the stress caused by the applied load. The ink is biodegradable in marine environments, which helps avoiding its accumulation in the ecosystem over time.

7.
ACS Appl Electron Mater ; 5(9): 5050-5060, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779887

RESUMO

Printed circuit boards (PCBs) physically support and connect electronic components to the implementation of complex circuits. The most widespread insulating substrate that also acts as a mechanical support in PCBs is commercially known as FR4, and it is a glass-fiber-reinforced epoxy resin laminate. FR4 has exceptional dielectric, mechanical, and thermal properties. However, it was designed without considering sustainability and end-of-life aspects, heavily contributing to the accumulation of electronic waste in the environment. Thus, greener alternatives that can be reprocessed, reused, biodegraded, or composted at the end of their function are needed. This work presents the development and characterization of a PCB substrate based on poly(lactic acid) and cotton fabric, a compostable alternative to the conventional FR4. The substrate has been developed by compression molding, a process compatible with the polymer industry. We demonstrate that conductive silver ink can be additively printed on the substrate's surface, as its morphology and wettability are similar to those of FR4. For example, the compostable PCB's water contact angle is 72°, close to FR4's contact angle of 64°. The developed substrate can be thermoformed to curved surfaces at low temperatures while preserving the conductivity of the silver tracks. The green substrate has a dielectric constant comparable to that of the standard FR4, showing a value of 5.6 and 4.6 at 10 and 100 kHz, respectively, which is close to the constant value of 4.6 of FR4. The substrate is suitable for microdrilling, a fundamental process for integrating electronic components to the PCB. We implemented a proof-of-principle circuit to control the blinking of LEDs on top of the PCB, comprising resistors, capacitors, LEDs, and a dual in-line package circuit timer. The developed PCB substrate represents a sustainable alternative to standard FR4 and could contribute to the reduction of the overwhelming load of electronic waste in landfills.

8.
ACS Appl Mater Interfaces ; 15(28): 33916-33931, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376819

RESUMO

Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.


Assuntos
Antozoários , Curcumina , Zeína , Animais , Antozoários/metabolismo , Curcumina/farmacologia , Antioxidantes/farmacologia , Clorofila/metabolismo , Recifes de Corais
9.
Nat Mater ; 10(11): 872-6, 2011 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-21946613

RESUMO

Self-assembly of molecular units into complex and functional superstructures is ubiquitous in biology. The number of superstructures realized by self-assembly of man-made nanoscale units is also growing. However, assemblies of colloidal inorganic nanocrystals are still at an elementary level, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we show how monodisperse colloidal octapod-shaped nanocrystals self-assemble, in a suitable solution environment, on two sequential levels. First, linear chains of interlocked octapods are formed, and subsequently the chains spontaneously self-assemble into three-dimensional superstructures. Remarkably, all the instructions for the hierarchical self-assembly are encoded in the octapod shape. The mechanical strength of these superstructures is improved by welding the constituent nanocrystals together.

10.
Nanoscale Horiz ; 8(1): 95-107, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36426604

RESUMO

Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation. We have investigated the impact of these scaffolds on the morphological, immunostaining and electrophysiological properties of CSCs extracted from human glioblastoma multiform (GBM) tumor cell line. Our data provide evidence in favor of the ability of GnP-incorporating scaffolds to promote CSC differentiation to the glial phenotype. Numerical simulations support the hypothesis that the electrical interface promotes the hyperpolarization of the cell membrane potential, thus triggering the CSC differentiation. We propose that the electrical cell/material interface can regulate endogenous bioelectrical cues, through the membrane potential manipulation, resulting in the differentiation of CSCs. Material-induced differentiation of stem cells and particularly of CSCs, can open new horizons in tissue engineering and new approaches to cancer treatment, especially GBM.


Assuntos
Glioblastoma , Humanos , Eletricidade Estática , Engenharia Tecidual/métodos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Diferenciação Celular , Microambiente Tumoral
11.
Nanoscale ; 13(7): 3948-3956, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33587088

RESUMO

The synergy between the organic component of two-dimensional (2D) metal halide layered perovskites and flexible polymers offers an unexplored window to tune their optical properties at low mechanical stress. Thus, there is a significant interest in exploiting their PL anisotropy by controlling their orientation and elucidating their interactions. Here, we apply this principle to platelet structures of micrometre lateral size that are synthesized in situ into free-standing polymer films. We study the photoluminescence of the resulting films under cyclic mechanical stress and observe an enhancement in the emission intensity up to ∼2.5 times along with a switch in the emission profile when stretching the films from 0% to 70% elongation. All the films recovered their initial emission intensity when releasing the stress throughout ca. 15 mechanical cycles. We hypothesize a combined contribution from reduced reabsorption, changes on in-plane and out-of-plane dipole moments that stem from different orientation of the platelets inside the film, and relative sliding of platelets within oriented stacks while stretching the films. Our results reveal how low-mechanical stress affects 2D layered perovskite aggregation and orientation, an open pathway toward the design of strain-controlled emission.

12.
ACS Appl Mater Interfaces ; 13(27): 31379-31392, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197081

RESUMO

Osteoarthritis (OA) is treated with the intra-articular injection of steroids such as dexamethasone (DEX) to provide short-term pain management. However, DEX treatment suffers from rapid joint clearance. Here, 20 × 10 µm, shape-defined poly(d,l-lactide-co-glycolide)acid microPlates (µPLs) are created and intra-articularly deposited for the sustained release of DEX. Under confined conditions, DEX release is projected to persist for several months, with only ∼20% released in the first month. In a highly rigorous murine knee overload injury model (post-traumatic osteoarthritis), a single intra-articular injection of Cy5-µPLs is detected in the cartilage surface, infrapatellar fat pad/synovium, joint capsule, and posterior joint space up to 30 days. One intra-articular injection of DEX-µPL (1 mg kg-1) decreased the expression of interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, IL-6, and matrix metalloproteinase (MMP)-13 by approximately half compared to free DEX at 4 weeks post-treatment. DEX-µPL also reduced load-induced histological changes in the articular cartilage and synovial tissues relative to saline or free DEX. In sum, the µPLs provide sustained drug release along with the capability to precisely control particle geometry and mechanical properties, yielding long-lasting benefits in overload-induced OA. This work motivates further study and development of particles that provide combined pharmacological and mechanical benefits.


Assuntos
Cartilagem Articular/metabolismo , Dexametasona/química , Dexametasona/metabolismo , Portadores de Fármacos/química , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Animais , Biomarcadores/metabolismo , Preparações de Ação Retardada , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intra-Articulares , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estresse Mecânico
13.
Carbohydr Polym ; 271: 118031, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364545

RESUMO

Cellulose ester films were prepared by esterification of cellulose with a multibranched fluorinated carboxylic acid, "BRFA" (BRanched Fluorinated Acid), at different anhydroglucose unit:BRFA molar ratios (i.e., 1:0, 10:1, 5:1, and 1:1). Morphological and optical analyses showed that cellulose-BRFA materials at molar ratios 10:1 and 5:1 formed flat and transparent films, while the one at 1:1 M ratio formed rough and translucent films. Degrees of substitution (DS) of 0.06, 0.09, and 0.23 were calculated by NMR for the samples at molar ratios 10:1, 5:1, and 1:1, respectively. ATR-FTIR spectroscopy confirmed the esterification. DSC thermograms showed a single glass transition, typical of amorphous polymers, at -11 °C. The presence of BRFA groups shifted the mechanical behavior from rigid to ductile and soft with increasing DS. Wettability was similar to standard fluoropolymers such as PTFE and PVDF. Finally, breathability and water uptake were characterized and found comparable to materials typically used in textiles.


Assuntos
Celulose/análogos & derivados , Ésteres/química , Hidrocarbonetos Fluorados/química , Membranas Artificiais , Propionatos/química , Celulose/síntese química , Esterificação , Ésteres/síntese química , Hidrocarbonetos Fluorados/síntese química , Interações Hidrofóbicas e Hidrofílicas , Propionatos/síntese química , Resistência à Tração , Molhabilidade
14.
Int J Biol Macromol ; 180: 709-717, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771545

RESUMO

The fabrication of pectin-cellulose nanocrystal (CNC) biocomposites has been systematically investigated by blending both polysaccharides at different relative concentrations. Circular free-standing films with a diameter of 9 cm were prepared by simple solution of these carbohydrates in water followed by drop-casting and solvent evaporation. The addition of pectin allows to finely tune the properties of the biocomposites. Textural characterization by AFM showed fibrous morphology and an increase in fiber diameter with pectin content. XRD analysis demonstrated that pectin incorporation also reduced the degree of crystallinity though no specific interaction between both polysaccharides was detected, by ATR-FTIR spectroscopy. The optical properties of these biocomposites were characterized for the first time and it was found that pectin in the blend reduced the reflectance of visible light and increased UV absorbance. Thermal stability, analyzed by TGA, was improved with the incorporation of pectin. Finally, pectin-cellulose nanocrystal biocomposites showed a good biodegradability in seawater, comparable to other common bioplastics such as cellulose and low-molecular weight polylactide, among others.


Assuntos
Celulose/química , Nanocompostos/química , Nanopartículas/química , Pectinas/química , Hidrólise , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Nanopartículas/ultraestrutura , Fenômenos Físicos , Polissacarídeos/química , Água do Mar/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
15.
ACS Sustain Chem Eng ; 9(46): 15484-15495, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34840919

RESUMO

Sustainable coatings for metal food packaging were prepared from ZnO nanoparticles (obtained by the thermal decomposition of zinc acetate) and a naturally occurring polyhydroxylated fatty acid named aleuritic (or 9,10,16-trihydroxyhexadecanoic) acid. Both components reacted, originating under specific conditions zinc polyaleuritate ionomers. The polymerization of aleuritic acid into polyaleuritate by a solvent-free, melt polycondensation reaction was investigated at different times (15, 30, 45, and 60 min), temperatures (140, 160, 180, and 200 °C), and proportions of zinc oxide and aleuritic acid (0:100, 5:95, 10:90, and 50:50, w/w). Kinetic rate constants calculated by infrared spectroscopy decreased with the amount of Zn due to the consumption of reactive carboxyl groups, while the activation energy of the polymerization decreased as a consequence of the catalyst effect of the metal. The adhesion and hardness of coatings were determined from scratch tests, obtaining values similar to robust polymers with high adherence. Water contact angles were typical of hydrophobic materials with values ≥94°. Both mechanical properties and wettability were better than those of bisphenol A (BPA)-based resins and most likely are related to the low migration values determined using a hydrophilic food simulant. The presence of zinc provided a certain degree of antibacterial properties. The performance of the coatings against corrosion was studied by electrochemical impedance spectroscopy at different immersion times in an aqueous solution of NaCl. Considering the features of these biobased lacquers, they can be potential materials for bisphenol A-free metal packaging.

16.
ACS Appl Bio Mater ; 3(2): 1044-1051, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019306

RESUMO

Plastic pollution is becoming one of the most critical global problems nowadays. On the other hand, polymers are very versatile materials, and their products cannot be eliminated totally, but alternatives must be found. A very promising candidate is fungal mycelium. It is a self-growing, natural material, made of well-organized natural polymers, whose morphology, hydrodynamic, and mechanical properties can be tuned by changing the substrate of growth. In this work, we show that even small modifications in the composition of a standard fungal growth medium, potato dextrose broth (PDB), can induce significant differences in the morphology, chemical, and hydrodynamic properties of Ganoderma lucidum mycelium. The growth rate of mycelium is also influenced by the substrate of growth. Mycelium materials grown in PDB enriched with d-glucose are highly porous, thicker, and more apt to adsorb moisture with respect to mycelium materials grown in PDB with a small quantity of lignin. The latter, on the other hand, grow very fast, following a concentric pattern, and are denser and less hydrophilic. All mycelia are, however, hydrophobic, with water contact angles around 120°. Mycelia have interesting properties, tunable at the nanoscale, and are thus suitable for many applications: the methods used in this work can be applied to different strains and conditions and allow for choosing the best mycelium-based material for any use.

17.
Mater Sci Eng C Mater Biol Appl ; 116: 111151, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32806258

RESUMO

Keratin extracted from wool fibers has recently gained attention as an abundant source of renewable, biocompatible material for tissue engineering and drug delivery applications. However, keratin extraction and processing generally require a copious use of chemicals, not only bearing consequences for the environment but also possibly compromising the envisioned biological outcome. In this study, we present, for the first time, keratin-PVP biocomposite fibers obtained via an all-water co-electrospinning process and explored their properties modulation as a result of different thermal crosslinking treatments. The protein-based fibers featured homogenous morphologies and average diameters in the range of 170-290 nm. The thermomechanical stability and response to a wet environment can be tuned by acting on the curing time; this can be achieved without affecting the 3D fibrous network nor the intrinsic hydrophilic behavior of the material. More interestingly, our protein-based membranes treated at 170 °C for 18 h successfully sustained the attachment and growth of primary human dermal fibroblasts, a cellular model which can recapitulate more faithfully the physiological human tissue conditions. Our proposed approach can be viewed as pivotal in designing tunable protein-based scaffolds for the next generation of skin tissue growth devices.


Assuntos
Queratinas , Povidona , Animais , Humanos , Engenharia Tecidual , Alicerces Teciduais , , Fibra de Lã
18.
ACS Omega ; 4(22): 19746-19755, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788606

RESUMO

Poly(3-hydroxybutyrate), a green polymer originating from prokaryotic microbes, has been used to prepare composites with graphene nanoplatelets (GnP) at different concentrations. The films were fabricated by drop-casting and were hot-pressed at a temperature lower than their melting point to provide the molecular chains enough energy to reorientate while avoiding melting and degradation. It was found that hot-pressing increases crystallinity and improves mechanical properties. The Young's modulus increased from 1.2 to 1.6 GPa for the poly(3-hydroxybutyrate) (P(3HB)) films and from 0.5 to 2.2 GPa for the 15 wt % P(3HB)/GnP composites. Electrical resistivity decreases enormously with GnP concentration and hot-pressing, reaching 6 Ω sq-1 for the hot-pressed 30 wt % P(3HB)/GnP composite. Finally, the hot-pressed P(3HB) samples exhibit remarkable oxygen barrier properties, with oxygen permeability reaching 2800 mL µm m-2 day-1, which becomes 895 mL µm m-2 day-1 when 15% GnP is added to the biopolymer matrix, one of the lowest values known for biopolymers and biocomposites. We propose that these biocomposites are used for elastic packaging and electronics.

19.
ACS Appl Mater Interfaces ; 11(34): 31317-31327, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31373784

RESUMO

Sustainable biocomposites have been developed by solvent mixing of poly(lactic acid) (PLA) with a fine powder of cocoa bean shells (CBS) and subsequent solution casting, using different concentrations of CBS. The inclusion of CBS recovers the crystallinity of the initially amorphous PLA films and improves the physical properties of the composites. Young's modulus increases by 80% with 75 wt % CBS inclusion; however, the composites maintain plasticity. The barrier properties of the hydrophobic composites were characterized, and the water vapor permeability is found to be ca. 3.5 × 10-5 g·m-1·day-1·Pa-1 and independent of the CBS content. On the other hand, oxygen permeability is found to depend on the CBS content, with values as low as 10 000 mL·µm·m-2·day-1·atm-1 for 50 wt % CBS. Furthermore, CBS confer antioxidant activity to the composites and improve swelling properties rendering the composites biodegradable in aquatic environments, reaching 70% of the maximum biodegradability in just 30 days. The above, in conjunction with the low level of migration measured in food simulant, make the PLA/CBS composites a highly promising material for active food packaging.

20.
Nanomaterials (Basel) ; 9(3)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841528

RESUMO

All-cellulose composites with a potential application as food packaging films were prepared by dissolving microcrystalline cellulose in a mixture of trifluoroacetic acid and trifluoroacetic anhydride, adding cellulose nanofibers, and evaporating the solvents. First, the effect of the solvents on the morphology, structure, and thermal properties of the nanofibers was evaluated by atomic force microscopy (AFM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), respectively. An important reduction in the crystallinity was observed. Then, the optical, morphological, mechanical, and water barrier properties of the nanocomposites were determined. In general, the final properties of the composites depended on the nanocellulose content. Thus, although the transparency decreased with the amount of cellulose nanofibers due to increased light scattering, normalized transmittance values were higher than 80% in all the cases. On the other hand, the best mechanical properties were achieved for concentrations of nanofibers between 5 and 9 wt.%. At higher concentrations, the cellulose nanofibers aggregated and/or folded, decreasing the mechanical parameters as confirmed analytically by modeling of the composite Young's modulus. Finally, regarding the water barrier properties, water uptake was not affected by the presence of cellulose nanofibers while water permeability was reduced because of the higher tortuosity induced by the nanocelluloses. In view of such properties, these materials are suggested as food packaging films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA