Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764255

RESUMO

Industrial hemp (Cannabis sativa L.), due to its bioactive compounds (terpenes and cannabinoids), has gained increasing interest in different fields, including for medical purposes. The evaluation of the safety profile of hemp essential oil (EO) and its encapsulated form (nanoemulsion, NE) is a relevant aspect for potential therapeutic applications. This study aimed to evaluate the toxicological effect of hemp EOs and NEs from cultivars Carmagnola CS and Uso 31 on three cell lines selected as models for topical and inhalant administration, by evaluating the cytotoxicity and the cytokine expression profiles. Results show that EOs and their NEs have comparable cytotoxicity, if considering the quantity of EO present in the NE. Moreover, cells treated with EOs and NEs showed, in most of the cases, lower levels of proinflammatory cytokines compared to Etoposide used as a positive control, and the basal level of inflammatory cytokines was not altered, suggesting a safety profile of hemp EOs and their NEs to support their use for medical applications.


Assuntos
Canabinoides , Cannabis , Óleos Voláteis , Óleos Voláteis/farmacologia , Canabinoides/farmacologia , Terpenos
2.
J Sci Food Agric ; 102(14): 6220-6235, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35485728

RESUMO

BACKGROUND: Solvent-free microwave-assisted extraction (MAE) is a green extraction method capable of boosting the yield and quality profile of hemp essential oil when compared with other conventional extraction techniques. During this process, two by-products are produced, namely the aqueous residue containing bioactive phenolics and the residual deterpenated biomass, which can be used for further extraction and purification of phytocannabinoids. To date, the hemp industry has not utilized these products, although they can be valuable for the food, cosmetic, nutraceutical and pharmaceutical market. RESULTS: This study assessed and optimized the variables affecting MAE efficiency, namely microwave irradiation power, extraction time and added water, which were studied using a central composite design approach, and results were used to optimize the extraction process for recovering three valuable fractions: essential oil, polyphenols and phytocannabinoids. The products obtained using the optimized conditions were characterized in terms of yield, chemical profile and antioxidant potential. Moreover, the by-products obtained during the optimized run were further analyzed in terms of their biological activity using both enzymatic and non-enzymatic assays. The aqueous residue demonstrated a powerful α-glucosidase inhibition, a good activity in terms of superoxide radical scavenging activity, a modest efficacy in terms of inhibition of advanced glycation end products formation and no activity in terms of lipase inhibition. The residual deterpenated biomass did not possess significant biological activity. CONCLUSION: This work demonstrated valorization of industrial hemp essential oil and its by-products, obtained by a sustainable and eco-friendly extraction method, through an almost waste-free approach. Cannabinoids as well as other valuable bioactive compounds such as glycosidic flavones may be recovered from the residues of the essential oil extraction, representing interesting substances in the pharmaceutical, cosmetic and nutraceutical fields. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Canabinoides , Cannabis , Flavonas , Óleos Voláteis , Antioxidantes/análise , Canabinoides/química , Cannabis/química , Produtos Finais de Glicação Avançada , Lipase , Micro-Ondas , Superóxidos , Água , alfa-Glucosidases
3.
Molecules ; 26(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806970

RESUMO

Most insecticides commonly used in storage facilities are synthetic, an issue that generates concerns about food safety and public health. Therefore, the development of eco-friendly pest management tools is urgently needed. In the present study, a 6% (w/w) Hazomalania voyronii essential oil-based nanoemulsion (HvNE) was developed and evaluated for managing Tribolium confusum, T. castaneum, and Tenebrio molitor, as an eco-friendly wheat protectant. Larval and adult mortality was evaluated after 4, 8, and 16 h, and 1, 2, 3, 4, 5, 6, and 7 days, testing two HvNE concentrations (500 ppm and 1000 ppm). T. confusum and T. castaneum adults and T. molitor larvae were tolerant to both concentrations of the HvNE, reaching 13.0%, 18.7%, and 10.3% mortality, respectively, at 1000 ppm after 7 days of exposure. However, testing HvNE at 1000 ppm, the mortality of T. confusum and T. castaneum larvae and T. molitor adults 7 days post-exposure reached 92.1%, 97.4%, and 100.0%, respectively. Overall, the HvNE can be considered as an effective adulticide or larvicide, depending on the target species. Our results highlight the potential of H. voyronii essential oil for developing green nanoinsecticides to be used in real-world conditions against key stored-product pests.


Assuntos
Inseticidas , Laurales/química , Óleos Voláteis , Tribolium/crescimento & desenvolvimento , Triticum/parasitologia , Animais , Emulsões , Inseticidas/química , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos Voláteis/farmacologia
4.
Langmuir ; 36(21): 5745-5753, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370512

RESUMO

Critical micelle concentration (CMC) is the main chemical-physical parameter to be determined for pure surfactants for their characterization in terms of surface activity and self-assembled aggregation. The CMC values can be calculated from different techniques (e.g., tensiometry, conductivity, fluorescence spectroscopy), able to follow the variation of a physical property with surfactant concentrations. Different mathematical approaches have been applied for the determination of CMC values from the raw experimental data. Most of them are independent of the operator, despite not all of the fitting procedures employed so far can be applied in all techniques. In this experimental work, the second derivative of the experimental data has been proposed as a unique approach to determine the CMC values from different techniques (tensiometry, conductimetry, densimetry, spectrofluorimetry, and high-resolution ultrasound spectroscopy). To this end, the CMC values of five different surfactants, specifically three anionic (sodium dodecyl sulfate, sodium deoxycolate, and N-lauroyl sarcosinate) and two nonionic, such as polyethylene glycol ester surfactants [polyethylenglicol (8) monostearate and polyethylenglicol (8) monolaurate], have been determined by this approach. The "second-derivate" approach provides a reliable determination of the CMC values among all of the techniques investigated, which were comparable to those calculated by the other operator-free routinely methods employed, such as segmental linear regression or Boltzmann regression. This study also highlighted the strengths and shortcomings of each technique over the others, providing an overview of the CMC values of commonly used anionic and nonionic surfactants in the pharmaceutical field, determined by employing different experimental approaches.

5.
Molecules ; 25(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322621

RESUMO

Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.


Assuntos
Cápsulas/química , Química Farmacêutica/métodos , Ciclodextrinas/química , Polímeros/química , Têxteis , Celulose/química , Portadores de Fármacos/química , Eletroquímica , Microesferas , Nanocápsulas , Nanofibras/química , Nanotecnologia/métodos , Odorantes , Perfumes , Solubilidade
6.
Pharm Dev Technol ; 24(10): 1258-1271, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31437077

RESUMO

The aim of the current investigation is to delineate the buccal applicability of an in situ composite gel containing aceclofenac (AC) amino methacrylate copolymer microparticles (MPs), surmounting limitations of oral existing conventional therapy. AC Eudragit RL100 MPs were fabricated and statistically optimized using 2241 factorial design. Better buccal applicability and enhanced localization were achieved by combining the optimum MPs with in situ ion-activated gellan gum gel. The crosslinking and gelation of in situ gel were investigated by morphological and solid state characterizations. Suitability for buccal delivery and in vivo therapeutic efficacy in inflammation model of rats were also assessed. Results showed that the best performing formula displayed particle size (PS) of 51.00 µm and high entrapment efficiency (EE%) of 94.73%. MPs were successfully entrapped inside the gel network of the composite system. Gelation tendency, pH, shear-thinning properties and mucoadhesivity of the prepared in situ composite gel guaranteed its buccal suitability. Sustained AC release features and promising in vitro anti-arthritic response were also demonstrated. Moreover, consistent and prolonged in vivo anti-inflammatory effect was achieved, relative to standard AC. Taken together; this study proves the potential of in situ composite gel as an appropriate therapeutic proposal for AC buccal delivery.


Assuntos
Resinas Acrílicas/química , Anti-Inflamatórios não Esteroides/química , Diclofenaco/análogos & derivados , Portadores de Fármacos/química , Metacrilatos/química , Polissacarídeos Bacterianos/química , Administração Bucal , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Diclofenaco/administração & dosagem , Diclofenaco/química , Diclofenaco/uso terapêutico , Composição de Medicamentos , Liberação Controlada de Fármacos , Edema/tratamento farmacológico , Masculino , Tamanho da Partícula , Ratos Sprague-Dawley , Viscosidade
7.
AAPS PharmSciTech ; 20(7): 265, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31342285

RESUMO

Here we investigated the disintegration action of the natural superdisintegrant soy polysaccharide (SP) and benchmarked it against sodium starch glycolate (SSG) and crospovidone (XPVP). Kinetics and mechanism of disintegration of various tablet formulations were monitored using a USB microscope connected to a computer, followed by image analysis. SP acts mainly by a swelling mechanism and it is most effective at concentrations of 4-8%. Its disintegration action is comparable with that of SSG and XPVP, in most cases. However, SP underperforms compared with these superdisintegrants, in extremely hard tablets containing a hydrophobic component. Moreover, it is more negatively affected by the concentration of magnesium stearate than SSG and XPVP. The disintegration action of SP is not affected by pH and ionic strength of the medium, but it is compromised by the presence of ethanol. This indicates that the concomitant administration of alcoholic beverages might hamper the disintegration of SP-containing tablets. Overall, SP is a promising tablet disintegrant for pharmaceutical and nutraceutical products.


Assuntos
Glycine max/química , Polissacarídeos/química , Povidona/química , Composição de Medicamentos , Excipientes/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Concentração Osmolar , Solubilidade , Comprimidos/química , Resistência à Tração
8.
AAPS PharmSciTech ; 19(5): 2009-2022, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29736888

RESUMO

Zein is the main storage protein of corn and it has several industrial applications. Mainly in the last 10-15 years, zein has emerged as a potential pharmaceutical excipient with unique features. Zein is a natural, biocompatible and biodegradable material produced from renewable sources. It is insoluble, yet due to its amphiphilic nature, it has self-assembling properties, which have been exploited for the formation of micromicroparticle and nanoparticle and films. Moreover, zein can hydrate so it has been used in swellable matrices for controlled drug release. Other pharmaceutical applications of zein in oral drug delivery include its incorporation in solid dispersions of poorly soluble drugs and in colonic drug delivery systems. This review describes the features of zein significant for its use as a pharmaceutical excipient for oral drug delivery, and it summaries the literature relevant to macroscopic zein-based oral dosage forms, i.e. tablets, capsules, beads and powders. Particular attention is paid to the most novel formulations and applications of zein. Moreover, gaps of knowledge as well as possible venues for future investigations on zein are highlighted.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes/química , Zeína/química , Administração Oral , Comprimidos
9.
AAPS PharmSciTech ; 18(7): 2706-2716, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28289969

RESUMO

The immersion cell is an in vitro performance test of drug release from semisolids. Several studies made use of immersion cells to investigate drug release from thermosensitive Poloxamer-based gels; however, specifications on the parameter setting are not yet available. Therefore, the aim of this study was to evaluate the influence of testing parameters on tramadol (a model drug) release, release rate, and dissolution efficiency (DE) from Poloxamer gels, using immersion cells. The thermosensitive gelling formulation showed batch-to-batch uniformity of gelling behavior, drug content, and drug release. The use of a membrane in the immersion cell resulted in slower drug release as compared to the absence of a membrane. Moreover, the faster the paddle rotation, the faster the drug release was. Membrane thickness showed a strong and significant linear relationship with corresponding DE values (Pearson's correlation coefficient, r = -0.9470; p = 0.004). Factors that did not influence drug release include paddle position, i.e., distance between paddle and membrane, as well as membrane mean pore size. This study sets forth the importance of carefully controlling the following parameters including presence/absence of membrane, paddle rotation speed, and membrane thickness during the setup of release experiments from gels using immersion cells.


Assuntos
Liberação Controlada de Fármacos , Poloxâmero/química , Tramadol/química , Preparações de Ação Retardada , Géis
10.
Mol Pharm ; 13(9): 3141-52, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27458925

RESUMO

The major intracellular barriers associated with DNA delivery using nonviral vectors are inefficient endosomal/lysosomal escape and poor nuclear uptake. LAH4-L1, a pH responsive cationic amphipathic peptide, is an efficient DNA delivery vector that promotes the release of nucleic acid into cytoplasm through endosomal escape. Here we further enhance the DNA transfection efficiency of LAH4-L1 by incorporating nuclear localizing signal (NLS) to promote nuclear importation. Four NLSs were investigated: Simian virus 40 (SV40) large T-antigen derived NLS, nucleoplasmin targeting signal, M9 sequence, and the reverse SV40 derived NLS. All peptides tested were able to form positively charged nanosized complexes with DNA. Significant improvement in DNA transfection was observed in slow-dividing epithelial cancer cells (Calu-3), macrophages (RAW264.7), dendritic cells (JAWSII), and thymidine-induced growth-arrested cells, but not in rapidly dividing cells (A549). Among the four NLS-modified peptides, PK1 (modified with SV40 derived NLS) and PK2 (modified with reverse SV40 derived NLS) were the most consistent in improving DNA transfection; up to a 10-fold increase in gene expression was observed for PK1 and PK2 over the unmodified LAH4-L1. Additionally PK1 and PK2 were shown to enhance cellular uptake as well as nuclear entry of DNA. Overall, we show that the incorporation of SV40 derived NLS, in particular, to LAH4-L1 is a promising strategy to improve DNA delivery efficiency in slow-dividing cells and dendritic cells, with development potential for in vivo applications and as a DNA vaccine carrier.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/metabolismo , Peptídeos/farmacologia , Plasmídeos/metabolismo , Células A549 , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Vetores Genéticos , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Sinais de Localização Nuclear/efeitos dos fármacos , Peptídeos/metabolismo , Plasmídeos/genética , Células RAW 264.7 , Vírus 40 dos Símios/genética , Transfecção
11.
Pharm Res ; 33(8): 2010-24, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27177721

RESUMO

PURPOSE: Biodegradable polymeric nanoparticles of different architectures based on polyethylene glycol-co-poly(ε-caprolactone) block copolymers have been loaded with noscapine (NOS) to study their effect on its anticancer activity. It was intended to use solubility of NOS in an acidic environment and ability of the nanoparticles to passively target drugs into cancer tissue to modify the NOS pharmacokinetic properties and reduce the requirement for frequent injections. METHODS: Linear and star-shaped copolymers were synthetized and used to formulate NOS loaded nanoparticles. Cytotoxicity was performed using a sulforhodamine B method on MCF-7 cells, while biocompatibility was determined on rats followed by hematological and histopathological investigations. RESULTS: Formulae with the smallest particle sizes and adequate entrapment efficiency revealed that NOS loaded nanoparticles showed higher extent of release at pH 4.5. Colloidal stability suggested that nanoparticles would be stable in blood when injected into the systemic circulation. Loaded nanoparticles had IC50 values lower than free drug. Hematological and histopathological studies showed no difference between treated and control groups. Pharmacokinetic analysis revealed that formulation P1 had a prolonged half-life and better bioavailability compared to drug solution. CONCLUSIONS: Formulation of NOS into biodegradable polymeric nanoparticles has increased its efficacy and residence on cancer cells while passively avoiding normal body tissues. Graphical Abstract ᅟ.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Tamanho da Partícula , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Nanopartículas/química , Noscapina/administração & dosagem , Noscapina/química , Poliésteres/química , Polietilenoglicóis/química , Ratos , Ratos Wistar
12.
Mol Pharm ; 12(6): 2112-25, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25881668

RESUMO

Oleanolic acid (OA) is a natural triterpenoid with anticancer properties, but its hydrophobic nature and poor aqueous solubility pose challenges in pharmaceutical formulation development. The present study aimed at developing OA-loaded mPEG-PLGA or mPEG-PLA nanoparticles (NPs) to improve the delivery of OA. The NPs were prepared by nanoprecipitation, and their physicochemical properties were characterized. The OA encapsulation efficiency of the NPs was between 40 and 75%. The size of the OA-loaded NPs was around 200-250 nm, which fell within the range required for tumor targeting by means of the enhanced permeability and retention (EPR) effect, and the negatively charged NPs remained physically stable for over 20 weeks with no aggregation observed. The OA-loaded NPs produced significant cytotoxic effects through apoptosis in cancer cell lines. Overall, the OA-loaded mPEG-PLGA NPs and mPEG-PLA NPs shared similar physicochemical properties. The former, especially the OA-loaded mPEG-P(D,L)LGA NPs, were more cytotoxic to cancer cells and therefore were more efficient for OA delivery.


Assuntos
Ácido Láctico/química , Nanopartículas/química , Ácido Oleanólico/química , Ácido Poliglicólico/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Portadores de Fármacos , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias , Ácido Oleanólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
13.
Pharm Res ; 32(3): 1094-104, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25236343

RESUMO

PURPOSE: This work investigated the influence of a model protein, bovine serum albumin (BSA), on the properties of a thermogelling formulation intended for administration inside body compartments where there is high albumin content, as in the case of inflamed joints; it also explored the relation between the variation of these properties and release performance of methotrexate (MTX), a drug used to treat forms of arthritis and rheumatic conditions. METHODS: The influence of BSA on the micellisation and gelation behaviour of Poloxamer 407, chosen as a model copolymer, was studied by differential scanning calorimetry (microDSC), dynamic light scattering (DLS), fluorescence spectroscopy and rheology studies. A release study of MTX loaded inside the hydrogel in presence and in absence of BSA was performed. RESULTS: DLS and microDSC data revealed that the micellisation process was not affected by the protein, as demonstrated by unaltered micellar size and thermodynamic parameters. While the presence of BSA in the copolymer system reduced gel consistency, the hydrogel release performance was only slightly affected. CONCLUSION: Our results suggested that the kinetics of MTX release mainly depended on the presence of the thermogelling copolymer, although other mechanisms related to BSA could be involved. Finally, the study assessed the feasibility of using a thermogelling hydrogel for in situ drug administration in areas with the presence of high protein concentrations.


Assuntos
Antirreumáticos/química , Portadores de Fármacos , Metotrexato/química , Poloxâmero/química , Soroalbumina Bovina/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Hidrogéis , Cinética , Luz , Micelas , Modelos Químicos , Estrutura Molecular , Tamanho da Partícula , Reologia , Espalhamento de Radiação , Solubilidade , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Tecnologia Farmacêutica/métodos , Temperatura
14.
AAPS PharmSciTech ; 15(2): 279-86, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24306677

RESUMO

The consumption of fibers is associated with many health benefits, such as a reduction of cardiovascular and gastrointestinal diseases, control of body weight, and prevention of diabetes. Despite the widespread use of fiber supplements such as capsules or tablets, there is an almost complete lack of information concerning the technological properties of functional fibers used in nutraceutical formulations. The aim of this work was to characterize the technological properties of citrus fibers necessary for their use as a processing aid in tableting. The results obtained showed that citrus fibers share many properties of other polysaccharides used as tableting excipients, such as thermal behavior and compaction mechanism, together with an appreciable tabletability. However, the most interesting properties resulted from their disintegration power. Citrus fibers behaved in a similar manner to the well-known super disintegrant croscarmellose sodium and resulted to be little susceptible to their concentration, to lubricant type, and lubricant concentration. Thus, this work supports the idea of a potential use of citrus fibers as "active" substances and processing aid in the tableting of nutraceutical products and also as functional excipient in pharmaceutical tablets formulation.


Assuntos
Citrus/química , Excipientes , Comprimidos , Química Farmacêutica , Fibras na Dieta/administração & dosagem , Tamanho da Partícula , Pós
15.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675394

RESUMO

The coating process for solid dosage forms is widely used in the pharmaceutical industry but presents challenges for small-scale production, needed in personalized medicine and clinical or galenic settings. This study aimed to evaluate immersion coating, a cost-effective small-scale method, for enteric-coated gelatin capsules using standard equipment. Two enteric coating polymers and different polymer concentrations were tested, along with API solubility. Results were compared with commercially available enteric capsule shells. Successful preparation of enteric coating capsules via immersion necessitates a comprehensive grasp of API and enteric polymer behavior. However, utilizing commercially available enteric capsule shells does not guarantee ease or robustness, as their efficacy hinges on the attributes of the active ingredient and excipients. Notably, coating with Eudragit S100 stands out for its superior process robustness, requiring minimal or no development time, thus representing the best option for small-scale enteric capsule production.

16.
Pharmacy (Basel) ; 12(1)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38392939

RESUMO

BACKGROUND: Compounding solid oral dosage forms into liquid preparations is a common practice for administering drug therapy to patients with swallowing difficulties. This is particularly relevant for those on enteral nutrition, where factors such as the administration procedure and co-administration of enteral nutrition play crucial roles in effective drug delivery. Due to the limited studies focused on this practice, the impact of co-administered nutrition remains unclear. METHODS: Pravastatin tablets were compounded into two liquid formulations and administered through three independent tubes for ten cycles. The drug amount was quantified upstream and downstream of the tubes both with and without different (fiber content) nutritional boluses. RESULTS: The compounding procedure did not lower the drug amount with respect to the original tablets. However, when the liquid formulation was pumped through the tubes, a statistically significant reduction in the pravastatin administered (between 4.6% and 11.3%) was observed. The co-administration of different nutritional boluses or the compounding procedure did not affect the general results. CONCLUSIONS: Pravastatin loss appears unavoidable when administered via the enteral tube. Although, in this case, the loss was of limited clinical relevance, it is important not to underestimate this phenomenon, especially with drugs having a narrow therapeutic index.

17.
Int J Pharm ; 661: 124388, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925239

RESUMO

One interesting field of research in the view of developing novel surfactants for pharmaceutical and cosmetic applications is the design of amphiphiles showing further bioactive properties in addition to those commonly displayed by surface-active compounds. We propose here the chemical synthesis, and characterization of 1-o-tolyl alkyl biguanide derivatives, having different lengths of the hydrocarbon chain (C3, C6, and C10), and showing surface active and antibacterial/disinfectant activities toward both Gram-positive and Gram-negative bacteria. Both surface active properties in terms of critical micelle concentration (CMC) and surface tension at CMC (γCMC), as well as the antimicrobial activity in terms of minimum inhibitory concentrations (MICs), were strongly dependent on the length of the hydrocarbon chain. Particularly, the C6 and C10 derivatives have a good ability to decrease surface tension (γCMC <40 mN/m) at low concentrations (CMC < 12 mM) and a satisfactory antibacterial effect (MIC values between 0.230 and 0.012 mM against S. aureus strains and between 0.910 and 0.190 against P.aeruginosa strains). Interestingly, these compounds showed a disinfectant activity at the tested concentrations that was comparable to that of the reference compound chlorhexidine digluconate. All these results support the possible use of these amphiphilic compounds as antibacterial agents and disinfectants in pharmaceutical or cosmetic formulations.

18.
Food Chem ; 448: 139101, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537552

RESUMO

Green technologies based on microwaves have been developed by the food industry to produce organoleptically acceptable fruit juices without preliminary processing. Microwave irradiation coupled with hydrodiffusion and gravity (MHG) combines microwave heating with the earth's gravity, allowing the collection of hydrophilic substances released from the irradiated matrix. To the best of our knowledge, MHG extraction has never been experimented to produce pomegranate juice. In this work, we have evaluated it as a potential alternative to the conventional squeezing. A central composite design study (CCD) allowed the selection of the best extractive conditions (irradiation power and extraction time) to obtain a pomegranate juice with higher yield, polyphenol (e.g., catechin and delphinidin-3,5-glucoside) content, and related bioactivities (antioxidant and antidiabetic) than the one obtained by squeezing while maintaining the chemical-physical properties. Thus, this technique appears to be a functional alternative to producing high value pomegranate juice.

19.
Drug Dev Ind Pharm ; 39(10): 1547-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23057598

RESUMO

CONTEXT: Mixtures made of oil, water and surfactants give rise to a wide range of structure with different characteristics and phase manifestations. OBJECTIVE: Aim of this paper is to build up and understand the phase diagram of a model ternary system (Water, Polysorbate 80 and isopropyl myristate) by the use of common techniques such as thermal analysis and rheology, in comparison with visual assessment and polarized light microscopy. METHODS: Different ternary systems were prepared and analyzed by means of DSC and rheology in order to highlight the state of water (free, interphasal, bound water) and the samples structural characteristics. RESULTS: The resultant phase diagram is divided into four different zones. Bound water zone is predominant at elevated surfactant/oil ratios, while as the surfactant/oil ratio decreases, DSC reveals the presence of free water. Interphasal water prevails at intermediate water and surfactant content which corresponds with gels systems. Mechanical spectra allow to discern between cubic (true gel) and lamellar mesophases (weak gel), while flow curves allow to distinguish among microemulsions, emulsions or lamellar mesophases. DISCUSSION: A deeper characterization of a model ternary phase diagram is possible, with respect to the simple visual inspection, by the use of thermal analysis and rheology. The state of water molecules and the viscoelastic characteristics of the system allow to obtain important structural considerations. CONCLUSIONS: In conclusion, the knowledge of the state of water and of the viscoelastic characteristics of the systems allow a deeper understanding of the structural features of the ternary phase diagram.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Modelos Químicos , Miristatos/química , Polissorbatos/química , Tensoativos/química , Água/química , Varredura Diferencial de Calorimetria , Fenômenos Químicos , Portadores de Fármacos , Módulo de Elasticidade , Emulsões , Temperatura Alta , Microscopia de Polarização , Transição de Fase , Reologia , Viscosidade
20.
Int J Pharm ; 643: 123265, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482231

RESUMO

Lubricants are excipients used in tablet formulations to reduce friction and adhesion forces within the die or on the punches surface during the manufacturing process. Despite these excipients are always required for the tablets production, their amount must be carefully evaluated since lubricants can negatively impact on mechanical strength, disintegration and dissolution behavior of solid dosage forms. Alternative compounds have been suggested to overcome the issues of conventional lubricants and sodium lauryl sulfate (SDS) is one of the most promising one. Despite SDS has been object of several investigations, a definitive conclusion on its effectiveness cannot still be drawn. Particularly, its efficacy on tablets disaggregation and API dissolution is still unclear. Here, the effect of SDS on all the relevant features of tablets and tableting process has been evaluated on immediate release hydrophobic tablets formulations in comparison with conventional lubricants. The results of this investigation are quite outspoken: SDS has a low lubricant power while it determines only a limited improvement on tablets hardness. It greatly improves the tablets wettability but only on model formulations, the presence of superdisintegrants resets its effectiveness and any possible effect on tablets disaggregation. None of the tested formulations showed improvement on the API dissolution rate.


Assuntos
Excipientes , Lubrificantes , Dodecilsulfato de Sódio/química , Lubrificantes/química , Excipientes/química , Ácidos Esteáricos/química , Composição de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA