Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(24): e2307200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197540

RESUMO

Uniform lithium deposition is essential to hinder dendritic growth. Achieving this demands even seed material distribution across the electrode, posing challenges in correlating the electrode's surface structure with the uniformity of seed material distribution. In this study, the effect of periodic surface and facet orientation on seed distribution is investigated using a model system consisting of a wrinkled copper (Cu)/graphene structure with a [100] facet orientation. A new methodology is developed for uniformly distributed silver (Ag) nanoparticles over a large area by controlling the surface features of Cu substrates. The regularly arranged Ag nanoparticles, with a diameter of 26.4 nm, are fabricated by controlling the Cu surface condition as [100]-oriented wrinkled Cu. The wrinkled Cu guides a deposition site for spherical Ag nanoparticles, the [100] facet determines the Ag morphology, and the presence of graphene leads to spacings of Ag seeds. This patterned surface and high lithiophilicity, with homogeneously distributed Ag nanoparticles, lead to uniform Li+ flux and reduced nucleation energy barrier, resulting in excellent battery performance. The electrochemical measurements exhibit improved cyclic stability over 260 cycles at 0.5 mA cm-2 and 100 cycles at 1.0 mA cm-2 and enhanced kinetics even under a high current density of 5.0 mA cm-2.

2.
Nano Lett ; 22(2): 761-767, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35029396

RESUMO

Electric vehicle manufacturers worldwide are demanding superior lithium-ion batteries, with high energy and power densities, compared to gasoline engines. Although conversion-type metal oxides are promising candidates for high-capacity anodes, low initial Coulombic efficiency (ICE) and poor capacity retention have hindered research on their applications. In this study, the ICE of conversion-type MoO3 is investigated, with a particular focus on the delithiation failure. A computational modeling predicts the concentration gradient of Li+ in MoO3 particles. The highly delithiated outer region of the particle forms a layer with low electronic conductivity, which impedes further delithiation. A comparative study using various sizes of MoO3 particles demonstrated that the electrode failure during delithiation is governed by the concentration gradient and the subsequent formation of a resistive shell. The proposed failure mechanism provides critical guidance for the development of conversion-type anode materials with improved electrochemical reversibility.

3.
Angew Chem Int Ed Engl ; 53(40): 10654-7, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25130188

RESUMO

The lithiation/de-lithiation behavior of a ternary oxide (Li2MO3, where M = Mo or Ru) is examined. In the first lithiation, the metal oxide (MO2) component in Li2MO3 is lithiated by a conversion reaction to generate nano-sized metal (M) particles and two equivalents of Li2O. As a result, one idling Li2O equivalent is generated from Li2MO3. In the de-lithiation period, three equivalents of Li2O react with M to generate MO3. The first-cycle Coulombic efficiency is theoretically 150% since the initial Li2MO3 takes four Li(+) ions and four electrons per formula unit, whereas the M component is oxidized to MO3 by releasing six Li(+) ions and six electrons. In practice, the first-cycle Coulombic efficiency is less than 150% owing to an irreversible charge consumption for electrolyte decomposition. The as-generated MO3 is lithiated/de-lithiated from the second cycle with excellent cycle performance and rate capability.

4.
Micromachines (Basel) ; 15(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675264

RESUMO

The current commercially used anode material, graphite, has a theoretical capacity of only 372 mAh/g, leading to a relatively low energy density. Lithium (Li) metal is a promising candidate as an anode for enhancing energy density; however, challenges related to safety and performance arise due to Li's dendritic growth, which needs to be addressed. Owing to these critical issues in Li metal batteries, all-solid-state lithium-ion batteries (ASSLIBs) have attracted considerable interest due to their superior energy density and enhanced safety features. Among the key components of ASSLIBs, solid-state electrolytes (SSEs) play a vital role in determining their overall performance. Various types of SSEs, including sulfides, oxides, and polymers, have been extensively investigated for Li metal anodes. Sulfide SSEs have demonstrated high ion conductivity; however, dendrite formation and a limited electrochemical window hinder the commercialization of ASSLIBs due to safety concerns. Conversely, oxide SSEs exhibit a wide electrochemical window, but compatibility issues with Li metal lead to interfacial resistance problems. Polymer SSEs have the advantage of flexibility; however their limited ion conductivity poses challenges for commercialization. This review aims to provide an overview of the distinctive characteristics and inherent challenges associated with each SSE type for Li metal anodes while also proposing potential pathways for future enhancements based on prior research findings.

5.
J Am Chem Soc ; 134(36): 15010-5, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22924470

RESUMO

Extensive applications of rechargeable lithium-ion batteries (LIBs) to various portable electronic devices and hybrid electric vehicles result in the increasing demand for the development of electrode materials with improved electrochemical performance including high energy, power density, and excellent cyclability, while maintaining low production cost. Here, we present a direct synthesis of ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes. Uniform-sized ferrite nanocrystals and carbon materials were synthesized simultaneously through a single heating procedure using metal-oleate complex as the precursors for both ferrite and carbon. 2-D nanostructures were obtained by using sodium sulfate salt powder as a sacrificial template. The 2-D ferrite/carbon nanocomposites exhibited excellent cycling stability and rate performance derived from 2-D nanostructural characteristics. The synthetic procedure is simple, inexpensive, and scalable for mass production, and the highly ordered 2-D structure of these nanocomposites has great potential for many future applications.

6.
ACS Appl Mater Interfaces ; 13(2): 2576-2583, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33400505

RESUMO

Solid-state lithium batteries have been intensively studied as part of research activities to develop energy storage systems with high safety and stability characteristics. Despite the advantages of solid-state lithium batteries, their application is currently limited by poor reversible capacity arising from their high resistance. In this study, we significantly improve the reversible capacity of solid-state lithium batteries by lowering the resistance through the introduction of a graphene and wrinkle structure on the surface of the copper (Cu) current collector. This is achieved through a process of chemical vapor deposition (CVD) facilitating graphene-growth synthesis. The modified graphene/wrinkled Cu current collector exhibits a periodic wrinkled pattern 420 nm in width and 22 nm in depth, and we apply it to a graphite composite electrode to obtain an improved areal loading average value of ∼2.5 mg cm-2. The surface-modified Cu current collector is associated with a significant increase in discharge capacity of 347 mAh g-1 at 0.2 C when used with a solid polymer electrolyte. Peel test results show that the observed enhancement is due to the improved strength of adhesion occurring between the graphite composite anode and the Cu current collector, which is attributed to mechanical interlocking. The surface-modified Cu current collector structure effectively reduces resistance by improving adhesion, which subsequently improves the performance of the solid-state lithium batteries. Our study can provide perspective and emphasize the importance of electrode design in achieving enhancements in battery performance.

7.
ACS Appl Mater Interfaces ; 13(51): 60978-60986, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918912

RESUMO

Despite the extremely high energy density of the lithium metal, dendritic lithium growth caused by nonuniform lithium deposition can result in low Coulombic efficiency and safety hazards, thereby inhibiting its practical applications. Here, we report a new strategy for adopting a nanopatterned gold (Au) seed on a copper current collector for uniform lithium deposition. We find that Au nanopatterns enhance lithium metal battery performance, which is strongly affected by the feature dimensions of Au nanopatterns (diameter and height). Ex situ scanning electron microscopy images confirm that this can be attributed to the perfectly selective lithium nucleation and uniform growth resulting from the spatial confinement effect. The spatial arrangement of Au dot seeds homogenizes the Li+ flux and electric field, and the size-controlled Au seeds prevent both seed-/substrate-induced agglomeration and interseed-induced lithium growth, leading to uniform lithium deposition. This dendrite-free lithium deposition results in the improvement of electrochemical performance, and the system showed cyclic stability over 300 cycles at 0.5 mA cm-2 and 200 cycles at 1.0 mA cm-2 (1 mA h cm-2) and a high rate capability. This study provides in-depth insights into the more complicated and diverse seed geometry control of seed materials for the development of high-performance lithium metal batteries.

8.
ACS Appl Mater Interfaces ; 12(29): 32633-32641, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32584023

RESUMO

The rechargeable Li-CO2 battery has attracted considerable attention in recent years because of its carbon dioxide (CO2) utilization and because it represents a practical Li-air battery. As with other battery systems such as the Li-ion, Li-O2, and Li-S battery systems, understanding the reaction pathway is the first step to achieving high battery performance because the performance is strongly affected by reaction intermediates. Despite intensive efforts in this area, the effect of material parameters (e.g., the electrolyte, the cathode, and the catalyst) on the reaction pathway in Li-CO2 batteries is not yet fully understood. Here, we show for the first time that the discharge reaction pathway of a Li-CO2 battery composed of graphene nanoplatelets/beta phase of molybdenum carbide (GNPs/ß-Mo2C) is strongly influenced by the dielectric constant of its electrolyte. Calculations using the continuum solvents model show that the energy of adsorption of oxalate (C2O42-) onto Mo2C under the low-dielectric electrolyte tetraethylene glycol dimethyl ether is lower than that under the high-dielectric electrolyte N,N-dimethylacetamide (DMA), indicating that the electrolyte plays a critical role in determining the reaction pathway. The experimental results show that under the high-dielectric DMA electrolyte, the formation of lithium carbonate (Li2CO3) as a discharge product is favorable because of the instability of the oxalate species, confirming that the dielectric properties of the electrolyte play an important role in the formation of the discharge product. The resulting Li-CO2 battery exhibits improved battery performance, including a reduced overpotential and a remarkable discharge capacity as high as 14,000 mA h g-1 because of its lower internal resistance. We believe that this work provides insights for the design of Li-CO2 batteries with enhanced performance for practical Li-air battery applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA