Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 145: 248-254, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28668653

RESUMO

Malaria is the most common parasitic disease in humans. It is estimated that 3 billion people live under the risk of contracting this disease in the world. Chloroquine (CQ) is the drug of choice to treat cases of non-complicated malaria. Forced degradation studies are important to know the drug's potentials degradation products and to develop a stability indicating method. Thus, chloroquine active pharmaceutical ingredient (API), chloroquine tablets and placebo were submitted to a detailed forced degradation study, using several stressing agents. The results were used on the development of a stability indicating method, using high performance liquid chromatography. The method was validated showing selectivity, precision, accuracy, robustness and linearity in the range of 30-360µg/mL of chloroquine. Chloroquine API and tablets were susceptible to alkaline hydrolysis with NaOH 1mol/L, and to oxidation with H2O2 3.0%. Two degradation products were formed in oxidative test. Kinetics of chloroquine degradation in alkaline hydrolysis was performed for both API and tablets. The calculated decay constant (k1) was 0.223days-1 for API and 0.182days-1 for tablets, while the half-life (t1/2) was 3.1days for API and 3.8days for tablets. Chemical structures have been proposed for the two degradation products formed in the presence of H2O2, using an UHPLC-UV-MS/MS approach.


Assuntos
Cromatografia Líquida de Alta Pressão , Cloroquina , Estabilidade de Medicamentos , Peróxido de Hidrogênio , Oxirredução , Reprodutibilidade dos Testes , Comprimidos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA