Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rec ; 22(10): e202200116, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35701099

RESUMO

The development of solid-state batteries has become one of the most promising directions in rechargeable secondary batteries due to their considerable energy densities and favorable safety. However, solid-state batteries with higher energy density and more durable and stable cycle life should be developed for large-scale energy storage and adaption to the rapidly increasing lithium battery production and sales market. Although inorganic solid electrolytes (ISEs) and composite solid electrolytes (CSEs) are relatively advantageous solid-state electrolytes, they also face severe challenges. This review summarizes the main stability issues related to chemical, mechanical, thermal, and electrochemical aspects faced by ISEs and CSEs. The corresponding state-of-the-art improvement strategies have been proposed, including filling of modified particles, electrolyte pore adjustment, electrolyte internal structure arrangement, and interface modification.

2.
Chemistry ; 26(70): 16774-16781, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32701198

RESUMO

The control of the second coordination sphere in a coordination complex plays an important role in improving catalytic efficiency. Herein, we report a zinc porphyrin complex ZnPor8T with multiple flexible triazole units comprising the second coordination sphere, as an electrocatalyst for the highly selective electrochemical reduction of carbon dioxide (CO2 ) to carbon monoxide (CO). This electrocatalyst converted CO2 to CO with a Faradaic efficiency of 99 % and a current density of -6.2 mA cm-2 at -2.4 V vs. Fc/Fc+ in N,N-dimethylformamide using water as the proton source. Structure-function relationship studies were carried out on ZnPor8T analogs containing different numbers of triazole units and distinct triazole geometries; these unveiled that the triazole units function cooperatively to stabilize the CO2 -catalyst adduct in order to facilitate intramolecular proton transfer. Our findings demonstrate that incorporating triazole units that function in a cooperative manner is a versatile strategy to enhance the activity of electrocatalytic CO2 conversion.

3.
Small ; 14(36): e1800821, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30073772

RESUMO

Conventional liquid electrolytes based lithium-ion batteries (LIBs) might suffer from serious safety hazards. Solid-state polymer electrolytes (SPEs) are very promising candidate with high security for advanced LIBs. However, the quintessential frailties of pristine polyethylene oxide/lithium salts SPEs are poor ionic conductivity (≈10-8 S cm-1 ) at 25 °C and narrow electrochemical window (<4 V). Many innovative researches are carried out to enhance their lithium-ion conductivity (10-4 S cm-1 at 25 °C), which is still far from meeting the needs of high-performance power LIBs at ambient temperature. Therefore, it is a pressing urgency of exploring novel polymer host materials for advanced SPEs aimed to develop high-performance solid lithium batteries. Aliphatic polycarbonate, an emerging and promising solid polymer electrolyte, has attracted much attention of academia and industry. The amorphous structure, flexible chain segments, and high dielectric constant endow this class of polymer electrolyte excellent comprehensive performance especially in ionic conductivity, electrochemical stability, and thermally dimensional stability. To date, many types of aliphatic polycarbonate solid polymer electrolyte are discovered. Herein, the latest developments on aliphatic polycarbonate SPEs for solid-state lithium batteries are summarized. Finally, main challenges and perspective of aliphatic polycarbonate solid polymer electrolytes are illustrated at the end of this review.

4.
Small ; 14(37): e1802244, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30133145

RESUMO

Notorious lithium dendrite causes severe capacity fade and harsh safety issues of lithium metal batteries, which hinder the practical applications of lithium metal electrodes in higher energy rechargeable batteries. Here, a kind of 3D-cross-linked composite network is successfully employed as a flexible-rigid coupling protective layer on a lithium metal electrode. During the plating/stripping process, the composite protective layer would enable uniform distribution of lithium ions in the adjacent regions of the lithium electrode, resulting in a dendrite-free deposition at a current density of 2 mA cm-2 . The LiNi0.5 Mn1.5 O4 -based lithium metal battery presents an excellent cycling stability at a voltage range of 3.5-5.0 V with the induction of 3D-cross-linked composite protective layer. From an industrial field application of view, thin lithium metal electrodes (40 µm, with 4 times excess lithium) can be used in LiNi0.5 Mn1.5 O4 (with industrially significant loading of 18 mg cm-2 and 2.6 mAh cm-2 )-based lithium metal batteries, which reveals a promising opportunity for practical applicability in high energy lithium metal batteries.

5.
Small ; 13(44)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28960934

RESUMO

Novel sulfur cathodes hold the key to the development of metal-sulfur batteries, the promising candidate of next-generation high-energy-storage systems. Herein, a fascinating sulfur cathode based on sulfide graphdiyne (SGDY) is designed with a unique structure, which is composed of a conducting carbon skeleton with high Li+ mobility and short sulfur energy-storing unites. The SGDY cathode can essentially avoid polysulfide dissolution and be compatible with commercially available carbonate-based electrolytes and Grignard reagent-based electrolytes (all phenyl complex (APC) type electrolytes). Both the assembled Li-S and Mg-S batteries exhibit excellent electrochemical performances including large capacity, superior rate capability, high capacity retention, and high Coulombic efficiency. More importantly, this is the first implementation case of a reliable Mg-S system based on nucleophilic APC electrolytes.

6.
Small ; 13(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27809415

RESUMO

Sodium ion battery is one of the promising rechargeable batteries due to the low-cost and abundant sodium sources. In this work, a monolithic sodium ion battery based on a Na3 V2 (PO4 )3 cathode, MoS2 layered anode, and polyether-based polymer electrolyte is reported. In addition, a new kind of polysulfonamide-supported poly(ethylene glycol) divinyl ether based polymer electrolyte is also demonstrated for monolithic sodium ion battery via in situ preparation. The resultant polymer electrolyte exhibits relatively high ionic conductivity (1.2 mS cm-1 ) at ambient temperature, wide electrochemical window (4.7 V), and favorable mechanical strength (25 MPa). Moreover, such a monolithic Na3 V2 (PO4 )3 /MoS2 sodium ion battery using this polymer electrolyte delivers outstanding rate capability (up to 10 C) and superior cyclic stability (84%) after 1000 cycles at 0.5 C. What is more essential, such a polymer electrolyte based soft-package monolithic sodium ion cell can still power a red light emitting diode lamp and run finite times without suffering from any internal short-circuit failures, even in the case of a bended and wrinkled state. Considering these aspects, this work no doubt provides a new approach for the design of a high-performance polymer electrolyte toward monolithic sodium ion battery with exceptional rate capability and high safety.

7.
ACS Appl Mater Interfaces ; 16(27): 34902-34912, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38904546

RESUMO

The separator is a crucial component in lithium batteries, as it physically separates the cathode and the anode while allowing ion transfer through the internal channel. The pore structure of the separator significantly influences the performance of lithium batteries, particularly lithium metal batteries. In this study, we investigate the use of a Janus separator composed of poly(ethylene terephthalate) (PET)-polytetrafluoroethylene (PTFE) fibers in lithium metal batteries. This paper presents a comprehensive analysis of the impact of this asymmetric material on the cycling performance of the battery alongside an investigation into the influence of two different substrates on lithium-ion deposition behavior. The research findings indicate that when the rigid PET side faces the lithium metal anode and the soft PTFE side faces the cathode, it significantly extends the cycling lifespan of lithium metal batteries, with an impressive 82.6% capacity retention over 2000 cycles. Furthermore, this study demonstrates the versatility of this separator type in lithium metal batteries by assembling the lithium metal electrode with high cathode-loading capacities (4 mA h/cm2). In conclusion, the results suggest that the design of asymmetric separators can serve as an effective engineering strategy with substantial potential for enhancing the lifespan of lithium metal batteries.

8.
ACS Appl Mater Interfaces ; 15(25): 30302-30311, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37337474

RESUMO

Silicon suboxide (SiOx) anodes have attracted considerable attention owing to their excellent cycling performance and rate capability compared to silicon (Si) anodes. However, SiOx anodes suffer from high volume expansion similar to Si anodes, which has been a challenge in developing suitable commercial binders. In this study, a water-soluble polyamide acid (WS-PAA) binder with ionic bonds was synthesized. The amide bonds inherent in the WS-PAA binder form a stable hydrogen bond with the SiOx anode and provide sufficient mechanical strength for the prepared electrodes. In addition, the ionic bonds introduced by triethylamine (TEA) induce water solubility and new Li+ transport channels to the binder, achieving enhanced electrochemical properties for the resulting SiOx electrodes, such as cycling and rate capability. The SiOx anode with the WS-PAA binder exhibited a high initial capacity of 1004.7 mAh·g-1 at a current density of 0.8 A·g-1 and a capacity retention of 84.9% after 200 cycles. Therefore, WS-PAA is a promising binder for SiOx anodes compared with CMC and SA.

9.
ACS Appl Mater Interfaces ; 13(29): 34274-34281, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255493

RESUMO

All-solid-state polymer electrolytes can improve the safety of lithium batteries. However, the common Bellcore polymer electrolyte technology faces several issues such as wasting a mass of solvent, high manufacturing cost, and poor interfacial compatibility between polymer electrolytes and electrodes. Herein, we propose an in situ polymerization technique to synthesize all-solid-state polymer electrolytes by a thiol-Michael addition click reaction. The alternating copolymer is made from the Michael addition reaction of ethylene glycol dimethacrylate (EGDMA) and 1,2-ethane dithiol (EDT). At ambient temperature, the obtained composite polymer electrolyte displays an ionic conductivity of 3.02 × 10-5 S/cm, an electrochemical window of 4.5 V, and a lithium-ion transference number of 0.45. In light of this unique polymerization process, the traditional fabrication method of liquid electrolyte-based lithium batteries can be adopted in the current study for the preparation of all-solid-state Li/LiFePO4 batteries. It was found that the assembled all-solid-state Li/LiFePO4 batteries exhibited superior charging/discharging performance and preferable safety. Thus, this facile and powerful in situ polymerization strategy may open up a new approach for the design and fabrication of all-solid-state batteries with desirable performances.

10.
Carbohydr Polym ; 251: 116975, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142552

RESUMO

Separator is a vital component of lithium-ion batteries (LIBs) due to its important roles in the safety and electrochemical performance of the batteries. Herein, we reported a cellulose nanofibrils (CNFs) reinforced pure cellulose paper (CCP) as a LIBs separator fabricated by a facile filtration process. The nanosized CNFs played crucial roles as a tuner to optimize the pore size of the as-prepared CCP, and also as a reinforcer to improve the mechanical strength of the resultant CCP. Results showed that the tensile strength of the CCP with 20 wt.% CNFs was 227 % higher compared to the commercial cellulose separator. In addition, the lithium cobalt oxide/lithium metal battery assembled with CCP separator displayed better cycle performance and working stability (capacity retention ratio of 91 % after 100 cycles) compared to the batteries with cellulose separator (52 %) and polypropylene separator (84 %) owing to the multiple synergies between CCP separator and electrolytes.


Assuntos
Celulose , Fontes de Energia Elétrica , Lítio , Celulose/química , Celulose/ultraestrutura , Eletroquímica , Eletrólitos , Lítio/química , Microscopia Eletrônica de Varredura , Nanofibras/química , Nanofibras/ultraestrutura , Papel , Porosidade , Resistência à Tração
11.
ChemSusChem ; 13(13): 3412-3417, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32379922

RESUMO

The effects of primary and second coordination spheres on molecular electrocatalysis have been extensively studied, yet investigations of third functional spheres are rarely reported. Here, an electrocatalyst (ZnPEG8T) was developed with a hydrophilic channel as a third functional sphere that facilitates relay proton shuttling to the primary and second coordination spheres for enhanced catalytic CO2 reduction. Using foot-of-the-wave analysis, the ZnPEG8T catalyst displayed CO2 -to-CO activity (TOFmax ) thirty times greater than that of the benchmark catalyst without a third functional sphere. A kinetic isotopic effect (KIE) study, in conjunction with voltammetry and UV/Vis spectroscopy, uncovered that the rate-limiting step was not the protonation step of the metallocarboxylate intermediate, as observed in many other molecular CO2 reduction electrocatalysts, but rather the replenishment of protons in the proton-shuttling channel. Controlled-potential electrolysis using ZnPEG8T displayed a faradaic efficiency of 100 % for CO2 -to-CO conversion at -2.4 V vs. Fc/Fc+ . A Tafel plot was also generated for a comparison to other reported molecular catalysts. This report validates a strategy for incorporating higher functional spheres for enhanced catalytic efficiency in proton-coupled electron-transfer reactions.

12.
ChemSusChem ; 13(16): 4069-4077, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32658334

RESUMO

Redox-flow batteries (RFBs) are a highly promising large-scale energy storage technology for mitigating the intermittent nature of renewable energy sources. Here, the design and implementation of a micellization strategy in an anthraquinone-based, pH-neutral, nontoxic, and metal-free aqueous RFB is reported. The micellization strategy (1) improves stability by protecting the redox-active anthraquinone core with a hydrophilic poly(ethylene glycol) shell and (2) increases the overall size to mitigate the crossover issue through a physical blocking mechanism. Paired with a well-established potassium ferrocyanide catholyte, the micelle-based RFB displayed an excellent capacity retention of 90.7 % after 3600 charge/discharge cycles (28.3 days), corresponding to a capacity retention of 99.67 % per day and 99.998 % per cycle. The mechanistic studies of redox-active materials were also conducted and indicated the absence of side reactions commonly observed in other anthraquinone-based RFBs. The outstanding performance of the RFB demonstrates the effectiveness of the micellization strategy for enhancing the performance of organic material-based aqueous RFBs.

13.
ACS Appl Mater Interfaces ; 12(13): 15262-15270, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150369

RESUMO

Non-aqueous redox flow batteries (RFBs) are promising energy storage devices owing to the broad electrochemical window of organic solvents. Nonetheless, the wide application of these batteries has been limited by the low stability and limited solubility of organic materials, as well as the insufficient ion conductivity of the cell separators in non-aqueous electrolytes. In this study, two viologen analogues with poly(ethylene glycol) (PEG) tails are designed as anolytes for non-aqueous RFBs. The PEGylation of viologen not only enhances the solubility in acetonitrile but also increases the overall molecular size for alleviated crossover. In addition, a composite nanoporous aramid nanofiber separator, which allows the permeation of supporting ions while inhibiting the crossover of the designer viologens, is developed using a scalable doctor-blading method. Paired with ferrocene, the full organic material-based RFB presents excellent cyclability (500 cycles) with a retention capacity per cycle of 99.93% and an average Coulombic efficiency of 99.3% at a current density of 2.0 mA/cm2. The high performance of the PEGylated viologen validates the potential of the PEGylation strategy for enhanced organic material-based non-aqueous RFBs.

14.
Mol Plant ; 12(1): 86-98, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30453087

RESUMO

Photosystem II (PSII) core phosphatase (PBCP) selectively dephosphorylates PSII core proteins including D1, D2, CP43, and PsbH. PBCP function is required for efficient degradation of the D1 protein in the repair cycle of PSII, a supramolecular machinery highly susceptible to photodamage during oxygenic photosynthesis. Here we present structural and functional studies of PBCP from Oryza sativa (OsPBCP). In a symmetrical homodimer of OsPBCP, each monomer contains a PP2C-type phosphatase core domain, a large motif characteristic of PBCPs, and two small motifs around the active site. The large motif contributes to the formation of a substrate-binding surface groove, and is crucial for the selectivity of PBCP toward PSII core proteins and against the light-harvesting proteins. Remarkably, the phosphatase activity of OsPBCP is strongly inhibited by glutathione and H2O2. S-Glutathionylation of cysteine residues may introduce steric hindrance and allosteric effects to the active site. Collectively, these results provide detailed mechanistic insights into the substrate selectivity, redox regulation, and catalytic mechanism of PBCP.


Assuntos
Oryza/enzimologia , Monoéster Fosfórico Hidrolases/química , Proteínas de Plantas/química , Domínio Catalítico , Peróxido de Hidrogênio/metabolismo , Oryza/química , Oryza/genética , Oryza/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fotossíntese , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato
15.
Adv Sci (Weinh) ; 5(3): 1700503, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29593953

RESUMO

Due to its high theoretical energy density (2600 Wh kg-1), low cost, and environmental benignity, the lithium-sulfur (Li-S) battery is attracting strong interest among the various electrochemical energy storage systems. However, its practical application is seriously hampered by the so-called shuttle effect of the highly soluble polysulfides. Herein, a novel design of multifunctional sandwich-structured polymer electrolyte (polymer/cellulose nonwoven/nanocarbon) for high-performance Li-S batteries is demonstrated. It is verified that Li-S battery with this sandwich-structured polymer electrolyte delivers excellent cycling stability (only 0.039% capacity decay cycle-1 on average exceeding 1500 cycles at 0.5 C) and rate capability (with a reversible capacity of 594 mA h g-1 at 4 C). These electrochemical performances are attributed to the synergistic effect of each layer in this unique sandwich-structured polymer electrolyte including steady lithium stripping/plating, strong polysulfide absorption ability, and increased redox reaction sites. More importantly, even with high sulfur loading of 4.9 mg cm-2, Li-S battery with this sandwich-structured polymer electrolyte can deliver high initial areal capacity of 5.1 mA h cm-2. This demonstrated strategy here may open up a new era of designing hierarchical structured polymer electrolytes for high-performance Li-S batteries.

16.
ACS Appl Mater Interfaces ; 10(16): 13588-13597, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29620848

RESUMO

Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li10SnP2S12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm-1, an electrochemical window exceeding 4.5 V, and a Li+ transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe0.2Mn0.8PO4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g-1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

17.
Adv Sci (Weinh) ; 4(2): 1600377, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28251055

RESUMO

Nowadays it is extremely urgent to seek high performance solid polymer electrolyte that possesses both interfacial stability toward lithium/graphitic anodes and high voltage cathodes for high energy density solid state batteries. Inspired by the positive interfacial effect of vinylene carbonate additive on solid electrolyte interface, a novel poly (vinylene carbonate) based solid polymer electrolyte is presented via a facile in situ polymerization process in this paper. It is manifested that poly (vinylene carbonate) based solid polymer electrolyte possess a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 9.82 × 10-5 S cm-1 at 50 °C. Moreover, it is demonstrated that high voltage LiCoO2/Li batteries using this solid polymer electrolyte display stable charge/discharge profiles, considerable rate capability, excellent cycling performance, and decent safety characteristic. It is believed that poly (vinylene carbonate) based electrolyte can be a very promising solid polymer electrolyte candidate for high energy density lithium batteries.

18.
ACS Appl Mater Interfaces ; 9(10): 8737-8741, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28231428

RESUMO

Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10-3 S cm-1) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li+. The LiFePO4/PECA-GPE/Li and LiNi1.5Mn0.5O4/PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

19.
ACS Appl Mater Interfaces ; 9(21): 17897-17905, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28488847

RESUMO

The fabricating process of well-known Bellcore poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP)-based polymer electrolytes is very complicated, tedious, and expensive owing to containing a large amount of fluorine substituents. Herein, a novel kind of poly(vinylene carbonate) (PVCA)-based polymer electrolyte is developed via a facile in situ polymerization method, which possesses the merits of good interfacial compatibility with electrodes. In addition, this polymer electrolyte presents a high ionic conductivity of 5.59 × 10-4 S cm-1 and a wide electrochemical stability window exceeding 4.8 V vs Li+/Li at ambient temperature. In addition, the rigid cyclic carbonate backbone of poly(vinylene carbonate) endows polymer electrolyte a superior mechanical property. The LiFe0.2Mn0.8PO4/graphite lithium ion batteries using this polymer electrolyte deliver good rate capability and excellent cyclability at room temperature. The superior performance demonstrates that the PVCA-based electrolyte via in situ polymerization is a potential alternative polymer electrolyte for high-performance rechargeable lithium ion batteries.

20.
ACS Appl Mater Interfaces ; 9(47): 41462-41472, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29112381

RESUMO

Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li+/Li, an ionic conductivity of 6.79 × 10-4 S cm-1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn2+ ions at 25 and 55 °C. Thus, the LiNi0.5Mn1.5O4/Li and LiNi0.5Mn1.5O4/Li4Ti5O12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA