Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37177724

RESUMO

The mobile node location method can find unknown nodes in real time and capture the movement trajectory of unknown nodes in time, which has attracted more and more attention from researchers. Due to their advantages of simplicity and efficiency, intelligent optimization algorithms are receiving increasing attention. Compared with other algorithms, the black hole algorithm has fewer parameters and a simple structure, which is more suitable for node location in wireless sensor networks. To address the problems of weak merit-seeking ability and slow convergence of the black hole algorithm, this paper proposed an opposition-based learning black hole (OBH) algorithm and utilized it to improve the accuracy of the mobile wireless sensor network (MWSN) localization. To verify the performance of the proposed algorithm, this paper tests it on the CEC2013 test function set. The results indicate that among the several algorithms tested, the OBH algorithm performed the best. In this paper, several optimization algorithms are applied to the Monte Carlo localization algorithm, and the experimental results show that the OBH algorithm can achieve the best optimization effect in advance.

2.
Entropy (Basel) ; 24(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010773

RESUMO

Location information is the primary feature of wireless sensor networks, and it is more critical for Mobile Wireless Sensor Networks (MWSN) to monitor specific targets. How to improve the localization accuracy is a challenging problem for researchers. In this paper, the Gaussian probability distribution model is applied to randomize the individual during the migration of the Adaptive Fish Migration Optimization (AFMO) algorithm. The performance of the novel algorithm is verified by the CEC 2013 test suit, and the result is compared with other famous heuristic algorithms. Compared to other well-known heuristics, the new algorithm achieves the best results in almost 21 of all 28 test functions. In addition, the novel algorithm significantly reduces the localization error of MWSN, the simulation results show that the accuracy of the new algorithm is more than 5% higher than that of other heuristic algorithms in terms of mobile sensor node positioning, and more than 100% higher than that without the heuristic algorithm.

3.
Ultrason Imaging ; 43(2): 74-87, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33563138

RESUMO

In this study, an automatic pennation angle measuring approach based on deep learning is proposed. Firstly, the Local Radon Transform (LRT) is used to detect the superficial and deep aponeuroses on the ultrasound image. Secondly, a reference line are introduced between the deep and superficial aponeuroses to assist the detection of the orientation of muscle fibers. The Deep Residual Networks (Resnets) are used to judge the relative orientation of the reference line and muscle fibers. Then, reference line is revised until the line is parallel to the orientation of the muscle fibers. Finally, the pennation angle is obtained according to the direction of the detected aponeuroses and the muscle fibers. The angle detected by our proposed method differs by about 1° from the angle manually labeled. With a CPU, the average inference time for a single image of the muscle fibers with the proposed method is around 1.6 s, compared to 0.47 s for one of the image of a sequential image sequence. Experimental results show that the proposed method can achieve accurate and robust measurements of pennation angle.


Assuntos
Ultrassonografia
4.
Sensors (Basel) ; 20(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340324

RESUMO

In this paper, a new intelligent computing algorithm named Enhanced Black Hole (EBH) is proposed to which the mutation operation and weight factor are applied. In EBH, several elites are taken as role models instead of only one in the original Black Hole (BH) algorithm. The performance of the EBH algorithm is verified by the CEC 2013 test suit, and shows better results than the original BH. In addition, the EBH and other celebrated algorithms can be used to solve node coverage problems of Wireless Sensor Network (WSN) in 3-D terrain with satisfactory performance.

5.
Math Biosci Eng ; 18(4): 4860-4870, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34198469

RESUMO

Cognitive green computing (CGC) dedicates to study the designing, manufacturing, using and disposing of computers, servers and associated subsystems with minimal environmental damage. These solutions should provide efficient mechanisms for maximizing the efficiency of use of computing resources. Evolutionary algorithm (EA) is a well-known global search algorithm, which has been successfully used to solve various complex optimization problems. However, a run of population-based EA often requires huge memory consumption, which limited their applications in the memory-limited hardware. To overcome this drawback, in this work, we propose a compact EA (CEA) for the sake of CGC, whose compact encoding and evolving mechanism is able to significantly reduce the memory consumption. After that, we use it to address the ternary compound ontology matching problem. Six testing cases that consist of nine ontologies are used to test CEA's performance, and the experimental results show its effectiveness.


Assuntos
Algoritmos , Computadores , Evolução Biológica , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA