Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(8): 4531-4543, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38357868

RESUMO

Conventional gold nanoparticles (Au NPs) have many limitations, such as aggregation and subsequent precipitation in the medium of high ionic strength and protein molecules. Furthermore, when exposed to biological fluids, nanoparticles form a protein corona, which controls different biological processes such as the circulation lifetime, drug release profile, biodistribution, and in vivo cellular distribution. These limitations reduce the functionality of Au NPs in targeted delivery, bioimaging, gene delivery, drug delivery, and other biomedical applications. To circumvent these problems, there are numerous attempts to design corona-free and stable nanoparticles. Here, we report for the first time that lipid corona (coating of lipid) formation on phenylalanine-functionalized Au NPs (AuPhe NPs) imparts excellent stability against the high ionic strength of bivalent metal ions, amino acids, and proteins of different charges as compared to bare nanoparticles. Moreover, this work is focused on the ability of lipid corona formation on AuPhe NPs to prevent protein adsorption in the presence of cell culture medium (CCM), oppositely charged protein (e.g., histone 3), and human serum albumin (HSA). The results demonstrate that the lipid corona successfully protects the AuPhe NPs from protein adsorption, leading to the development of corona-free character. This unique achievement has profound implications for enhancing the biomedical utility and safety of these nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Humanos , Ouro/química , Nanopartículas Metálicas/química , Fenilalanina , Distribuição Tecidual , Nanopartículas/química , Proteínas , Coroa de Proteína/química , Lipídeos
2.
Langmuir ; 39(14): 4881-4894, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988163

RESUMO

The aggregation and subsequent precipitation of gold nanoparticles (Au NPs) in the presence of protein molecules restrict the usefulness of NPs in biomedical applications. Till now, the influence of different properties of Au NPs (size, surface charge, surface coatings) and proteins (surface charge, chemical modification, folded and unfolded states) and pH and ionic strength of the solution on the aggregation of both Au NPs and proteins has been thoroughly discussed in the literature. However, the underlying different mechanistic pathways of the protein concentration-dependent aggregation of both Au NPs and proteins are poorly understood. The impact of the lipid corona on the protein-induced Au NP aggregation has remained an unresolved issue. In this context, we investigate the interaction of the negatively charged aromatic amino acid (phenylalanine and tyrosine)-functionalized gold nanoparticles (Au-AA NPs) with the positively charged globular protein lysozyme at different protein concentrations and compare the results with those of conventional citrate-functionalized Au NPs (Au-Cit NPs). Next, we conjugate lipids and proteins to Au NPs to impede the aggregation of Au NPs induced by the lysozyme. Our results reveal that the aggregation mechanism of the Au-AA NPs is distinctly different at low and high protein concentrations with the uniqueness of the Au-AA NPs over the Au-Cit NPs. Furthermore, we find that human serum albumin (HSA) protein-conjugated Au-AA and Au-Cit NPs are more effective in preventing the lysozyme-induced Au NP aggregation than bovine serum albumin (BSA)-conjugated Au NPs. For the first time, we also report the significant role of "hard" and "soft" lipid coronas in the aggregation of amino acid (phenylalanine)-functionalized gold nanoparticles in the presence of lysozyme protein.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Humanos , Ouro/química , Nanopartículas Metálicas/química , Muramidase , Lipídeos , Aminoácidos Aromáticos , Fenilalanina
3.
Molecules ; 28(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37241827

RESUMO

Cholesta-5,7,9(11)-trien-3ß-ol (9,11-dehydroprovitamin D3, CTL) is used as a fluorescent probe to track the presence and migration of cholesterol in vivo. We recently described the photochemistry and photophysics of CTL in degassed and air-saturated tetrahydrofuran (THF) solution, an aprotic solvent. The zwitterionic nature of the singlet excited state, 1CTL* is revealed in ethanol, a protic solvent. In ethanol, the products observed in THF are accompanied by ether photoadducts and by photoreduction of the triene moiety to four dienes, including provitamin D3. The major diene retains the conjugated s-trans-diene chromophore and the minor is unconjugated, involving 1,4-addition of H at the 7 and 11 positions. In the presence of air, peroxide formation is a major reaction channel as in THF. X-ray crystallography confirmed the identification of two of the new diene products as well as of a peroxide rearrangement product.

4.
Langmuir ; 37(16): 5022-5033, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33856214

RESUMO

The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past. The amino acid monomers initially form small aggregates through clusterization, which provides the fundamental building blocks to establish the amyloid structure as well as the luminescence property. Because of the clusterization, these Au NPs/nano-aggregate systems are also found to exhibit remarkable stability against the freeze-thaw cycle and several other external stimuli, which can be useful for biological and biomedical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Aminoácidos , Aminoácidos Aromáticos , Tirosina
5.
Langmuir ; 36(35): 10628-10637, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787043

RESUMO

Photoluminescent carbon dots (C-dots) are widely used for bioimaging techniques to study different cellular processes. However, biocompatibility of C-dots is crucial because the wrong selection of C-dots may lead to an adverse effect on a particular cellular process. Herein, we investigate the interaction of zwitterionic lipid vesicles with photoluminescent C-dots derived from different isomeric (ortho, meta, and para) precursors of phenylenediamine (PDA) by spectroscopic and microscopic imaging techniques as well as dynamic light scattering methods. The study reveals that interaction of lipid vesicles with C-dots is highly dependent on the properties of the isomeric precursors. We find that vesicles retain their morphology upon interaction with ortho C-dots (oCD). The microscopic images reveal that oCD are selectively embedded in the lipid vesicles and can effectively be used for imaging purpose. On the contrary, meta and para C-dots (mCD and pCD) being located on the interfacial region induce aggregation in the vesicles. We explain the observation in terms of the location of the C-dots on the lipid vesicles, their electrostatic attraction at the vesicle interface, possible cross-linking with other vesicles and different hydration features of the isomeric precursors of the C-dots. The study may be helpful in understanding the interactions and attachment processes of C-dots at the interface of biological membranes.

6.
Phys Chem Chem Phys ; 22(6): 3234-3244, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31994545

RESUMO

In the present contribution, we investigate the interactions of lipid bilayer membranes of different charges and different phase states with aliphatic amino acids of varying charge (aspartic acid, glutamic acid, arginine and lysine) and hydrophobicity (serine, leucine and valine) by steady state and time-resolved spectroscopic techniques, dynamic light scattering (DLS) measurements and confocal imaging (CLSM). The study reveals that negatively charged amino acids such as aspartic acid and glutamic acid interact strongly with the lipid membranes particularly with negatively charged lipid membranes by stabilizing their gel phase. On the other hand, positively charged amino acids bring in hydration in the membranes. We explain this unique observation by the shift in pKa of amino acids in the vicinity of the lipid membranes and solvation and desolvation processes in the light of recent computer simulations. We also find that hydrogen bonding plays a significant role in governing the interaction of aliphatic amino acids with zwitterionic lipid membranes. The more polar serine bearing a hydroxyl group at the terminal carbon offers a stronger interaction with the lipid bilayer membranes as compared to its analogues leucine and valine, which are hydrophobic in nature.


Assuntos
Aminoácidos/química , Bicamadas Lipídicas/química , Simulação por Computador , Desidratação , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Cinética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
7.
Langmuir ; 35(19): 6429-6440, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30983360

RESUMO

In this contribution, we report the interaction of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid vesicles with a series of trivalent metal ions of the same group, namely, Al3+, Ga3+, and In3+, to get a distinct view of the effect of size, effective charge, and hydration free energy of these metal ions on lipid vesicles. We employed steady-state and time-resolved spectroscopic techniques including time-resolved anisotropy measurement, confocal imaging, and dynamic light scattering (DLS) measurement to probe the interaction. Our study reveals that all of the three trivalent metal ions induce gelation in lipid vesicles by removing water molecules from the interfacial region. The extent of gelation induced by the metal ions follows the order of In3+ > Ga3+ ≥ Al3+. We explain this observation in light of different free-energy terms. Notably, the degree of interaction for trivalent metal ions is higher as compared to that for divalent metal ions at physiological pH (pH ∼ 7.0). Most importantly, we observe that unlike divalent metal ions, trivalent metal ions dehydrate the lipid vesicles even at lower pH. The DLS measurement and confocal imaging indicate that In3+ causes significant aggregation or fusion of the PC vesicles, while Al3+ and Ga3+ did not induce any aggregation at the experimental concentration. We employ Derjaguin-Landau-Vervey-Overbeek (DLVO) theory to explain the aggregation phenomena induced by In3+.

8.
Langmuir ; 35(4): 1008-1020, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30601000

RESUMO

We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e., DMPC ( Tm = 24 °C), DOPC ( Tm = -20 °C), and iPC lipid DOCP ( Tm = -20 °C) to study their interactions with AuNPs functionalized with anionic ligands citrate, 3-mercaptopropionic acid, glutathione, and cationic ligand cysteamine. We studied the interactions by steady-state and time-resolved spectroscopic studies using membrane-sensitive probes 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and 8-anilino-1 naphthalenesulfonate (ANS), as well as by confocal laser scanning microscopy (CLSM) imaging and dynamic light scattering (DLS) measurements. We observe that AuNPs bring in stability to the lipid vesicle, and the extent of interaction differs with the different surface ligands on the AuNPs. We observe that AuNPs functionalized with citrate effectively increase the phase-transition temperature of the vesicles by interacting with them. Our study reveals that the extent of interaction depends on the bulkiness of the ligands attached to the AuNPs. The bulkier ligands exert less van der Waals force, resulting in a weaker interaction. Moreover, we find that the interactions are more strongly pronounced when the vesicles are near the phase-transition temperature of the lipid.  The CLSM imaging and DLS measurements demonstrate the surface modifications in the vesicles as a result of these interactions.

9.
Phys Chem Chem Phys ; 20(21): 14796-14807, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29781031

RESUMO

In this manuscript, we investigate the interactions of different metal ions with zwitterionic phospholipid bilayers of different chain lengths using the well-known membrane probe PRODAN and steady state and time resolved fluorescence spectroscopy. We used three zwitterionic lipids that are widely different in their phase transition temperature, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) and salts of zinc (Zn), calcium (Ca) and magnesium (Mg). The steady state and time resolved studies reveal that the affinity of the metal ions follows the order Zn2+ > Ca2+ > Mg2+. The study further reveals that the lipid membrane with an unsaturated chain exhibits very small affinity towards metal ions. We find that the Zn2+ and Ca2+ metal ions induce significant gelation in the lipid bilayer possibly by dehydrating the lipid bilayer surface. The study also demonstrates that unlike Zn2+ and Ca2+, dehydration does not take place for Mg2+. The extreme hydration induced by Mg2+ is rationalized by the tight hydration of Mg2+ and very high free energy barrier of Mg2+ to bind with lipid oxygen as compared to that of water molecules.

10.
Chemphyschem ; 17(7): 1070-7, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26752093

RESUMO

Controlled release of an anticancer drug, doxorubicin (dox), from metal-organic framework (MOF)-drug composites is demonstrated under different external stimuli. 1,3,5-Benzenetricarboxylic acid (H3 BTC) is used as an organic ligand, and iron acetate and zinc nitrate are used as metal sources to synthesize Fe-BTC and Zn-BTC MOFs, which are known to be biocompatible. The in situ formation of MOF-drug composites demonstrates high drug loading capacity compared to conventional methods. The present methodology is devoid of any extra steps for loading the drug after synthesis. Moreover, the drug loading is also independent of pore size of the MOF as the drug molecules are embedded inside the MOF during their in situ formation. The drug release was monitored under external stimuli including change to acidic pH and the presence of biocompatible liposomes for a period of more than 72 h. Steady-state fluorescence spectroscopy is used to monitor the drug release as a function of time and confocal laser scanning microscopy is used to unravel the post-release fate of doxorubicin in the presence of liposomes. It is found that drug release rate is higher for the Zn-BTC-dox composite than for the Fe-BTC-dox composite. This is attributed to the stronger binding between dox and Fe-BTC than that between dox and Zn-BTC. This study highlights a novel approach for the preparation of MOF-drug composites in an aqueous medium for future biomedical applications.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Compostos Organometálicos/química , Dimiristoilfosfatidilcolina/química , Concentração de Íons de Hidrogênio , Ferro , Cinética , Lipossomos/química , Compostos Organometálicos/síntese química , Fosfatidilgliceróis/química , Ácidos Tricarboxílicos/química , Água , Zinco
11.
Langmuir ; 32(35): 8889-99, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27465781

RESUMO

In this paper, we report the lipoplex-mediated deintercalation of anticancer drug doxorubicin (DOX) from the DOX-DNA complex under controlled experimental conditions. We used three zwitterionic liposomes, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC), which are widely different in their phase transition temperatures to form a lipoplex with calf thymus DNA in the presence of Ca(2+) ions. The study revealed that DPPC being in sol-gel phase was more effective in releasing the drug from the DOX-DNA complex compared with liposomes that remain in liquid crystalline phase (DMPC and POPC). The higher extent of drug release in the case of DPPC liposomes was attributed to the stronger lipoplex formation with DNA as compared with that of other liposomes. Owing to the relatively smaller head group area, the DPPC liposomes in their sol-gel phase can absorb a larger number of Ca(2+) ions and hence offer a strong electrostatic interaction with DNA. This interaction was confirmed by time-resolved anisotropy and circular dichroism spectroscopy. Apart from the electrostatic interaction, the possible hydrophobic interaction between the liposomes and DNA was also taken into account for the observed deintercalation. The successful uptake of drug molecules by liposomes from the drug-DNA complex in the post-release period was also confirmed using confocal laser scanning microscopy (CLSM).


Assuntos
Adutos de DNA/química , DNA/química , Doxorrubicina/química , Lipossomos/química , 1,2-Dipalmitoilfosfatidilcolina/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Cálcio/química , Cálcio/metabolismo , Cátions Bivalentes , DNA/metabolismo , Adutos de DNA/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Doxorrubicina/metabolismo , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Microscopia Confocal , Transição de Fase , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Eletricidade Estática
12.
Langmuir ; 32(1): 159-70, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26605667

RESUMO

Biocompatible liposomes were used for the first time to study the deintercalation process of a prominent anticancer drug, doxorubicin (DOX), from doxorubicin-intercalated DNA (DOX-DNA complex) under controlled experimental conditions. The study revealed that anionic liposomes (DMPG liposomes) appeared to be the most effective to bring in the highest percentage of drug release while cationic liposomes (DOTAP liposomes) scored the lowest percentage of release. The drug release was primarily attributed to the electrostatic interaction between liposomes and drug molecules. Apart from this interaction, changes in the hydrophobicity of the medium upon addition of liposomes to the DNA-drug solution accompanied by lipoplex formation between DNA and liposomes were also attributed to the observed deintercalation. The CD and the time-resolved rotational relaxation studies confirmed that lipoplex formation took place between liposomes and DNA owing to electrostatic interaction. The confocal study revealed that in the postrelease period, DOX binds with liposomes. The reason behind the binding is electrostatic interaction as well as the unique bilayer structure of liposomes which helps it to act as a "hydrophobic sink" for DOX. The study overall highlighted a novel strategy for deintercalation of drug using biocompatible liposomes, as the release of the drug can be controlled over a period of time by varying the concentration and composition of the liposomes.


Assuntos
Antineoplásicos/química , Adutos de DNA/química , Doxorrubicina/química , Lipossomos/química , Liberação Controlada de Fármacos , Eletricidade Estática
13.
Chemphyschem ; 16(4): 866-71, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25586408

RESUMO

The binding and detachment of carboxyl-modified gold nanoparticles from liposomes is used for controlled drug delivery. This study reveals that the binding and detachment of nanoparticles from liposomes depends on the degree of hydration of the liposomes. Liposomes with a lower hydration level undergo stronger electrostatic interactions with negatively charged gold nanoparticles, thus leading to a slower detachment of the carboxyl-modified gold nanoparticles under gastric conditions. Therefore, under gastric conditions, gold-nanoparticle-decorated dipalmitoylphosphatidylcholine (DPPC) liposomes exhibit an at least ten-times-slower drug release compared to gold-nanoparticle-decorated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, although both liposomes in the bare state fail to pursue controlled release. Our study also reveals that one can modulate the drug-release rate by simply varying the concentration of nanoparticles. This study highlights a novel strategy for the controlled release of drug molecules from liposomes.


Assuntos
Antineoplásicos/química , Ouro/química , Lipossomos/química , Nanopartículas Metálicas/química , Água/química , Concentração de Íons de Hidrogênio , Solubilidade , Eletricidade Estática
14.
Mol Pharm ; 12(9): 3158-66, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26196058

RESUMO

The conventional drug delivery systems made from organic- or inorganic-based materials suffer from some problems associated with uncontrolled drug release, biocompatibility, cytotoxicity, and so forth. To overcome these problems, zeolitic imidazole framework (ZIF) hybrid materials can be one of the solutions. Here, we report a very easy and successful encapsulation of an anticancer drug doxorubicin inside two ZIFs, namely, ZIF-7 and ZIF-8, which are little explored as drug delivery systems, and we studied the controlled release of the drug from these two ZIFs under external stimuli such as change in pH and upon contact with biomimetic systems. Experimental results demonstrate that ZIF-7 remains intact when the pH changes from physiological condition to acidic condition, whereas ZIF-8 successfully releases drug under acidic condition. Interestingly, both the ZIFs are excellent for drug release when they come in contact with micelles or liposomes. In the case of ZIF-8, the drug delivery can be controlled for 3 h, whereas its analogue ZIF-7 delivers the drug for a time span of 10 h. We explained the reluctance of ZIF-7 toward drug release in terms of rigidity. This study highlights that by using different ZIFs and liposomes, the drug release rate can be easily modulated, which implies ample possibility for ZIFs as a good drug delivery system. The study shows a novel strategy for easy drug encapsulation and its release in a controlled manner, which will help future development of the drug delivery system.


Assuntos
Antibióticos Antineoplásicos/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Imidazóis/química , Nanosferas/química , Zeolitas/química , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Modelos Moleculares
15.
Phys Chem Chem Phys ; 17(26): 16937-46, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26060925

RESUMO

Studies on interactions between an anticancer alkaloid, ellipticine, and various carrier proteins in blood serum show tangible results to gain insight into the solubility and transport of the drug under physiological conditions. In this report, we extensively studied the interactions of different prototropic species of ellipticine with two prominent serum proteins namely human serum albumin (HSA) and immunoglobulin G (IgG) in their native and partially unfolded states using steady state and time resolved fluorescence spectroscopy, molecular docking and circular dichroism (CD). Both the fluorescence techniques and molecular modeling studies elucidate that only neutral species of ellipticine binds to HSA in the sudlow site II. Unlike HSA, IgG in the native state mostly binds to cationic species of ellipticine. However, in partially unfolded configuration, IgG binds to the neutral ellipticine molecules. Molecular docking studies indicate the prevalence of electrostatic interactions involving charged residues in the binding process of cationic species of ellipticine with native IgG in its Fab region. In native conformation, the hydrophobic residues of the Fab region are found to be buried completely by the ligand. This implies that the hydrophobic interaction will be favored by unfolding of IgG through which the hydrophobic pocket will be more accessible to neutral species of ellipticine. The circular dichroism measurements reveal that upon interaction with ellipticine, heat and acid treated HSA resumes its α-helical content. This conclusive comparative study on interactions of IgG and HSA with ellipticine yields the result that native HSA is responsible for transport of neutral species of ellipticine whereas IgG carries cationic ellipticine in its native form.


Assuntos
Antineoplásicos/química , Elipticinas/química , Imunoglobulina G/química , Simulação de Acoplamento Molecular , Albumina Sérica/química , Dicroísmo Circular , Humanos , Espectrometria de Fluorescência
16.
Phys Chem Chem Phys ; 16(29): 15681-91, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24960221

RESUMO

The entrapment of neutral and cationic species of an anticancer drug, namely ellipticine and their dynamic features in different bile salt aggregates have been investigated for the first time using steady state and time-resolved fluorescence spectroscopy. Because ellipticine exists in various prototropic forms under physiological conditions, we performed comparative photophysical and dynamical studies on these prototropic species in different bile salts varying in their head groups and hydrophobic skeletons. We found that the initial interaction between ellipticine and bile salts is governed by the electrostatic forces where cationic ellipticine is anchored to the head groups of bile salts. Bile salts having conjugated head groups are better candidates to bind with the cationic species than those having the non-conjugated ones. The fact implies that binding of cationic species to different bile salts depends on the pK(a) of the corresponding bile acids. The hydrophobic interaction dominates at higher concentrations of bile salts due to formation of aggregates and results in entrapment of neutral ellipticine molecules according to their hydrophobicity indices. Thus bile salts act as multisite drug carriers. The rotational relaxation parameters of cationic ellipticine were found to be dependent on head groups and the number of hydroxyl groups on the hydrophilic surface of bile salts. Cationic ellipticine exhibits a faster rotational relaxation in the tri-hydroxy bile salt aggregates than in di-hydroxy bile salts. We interpreted this observation from the fact that tri-hydroxy bile salts hold a higher number of water molecules in their hydrophilic surface offering a less viscous environment for ellipticine compared to di-hydroxy bile salts. Surprisingly, the neutral ellipticine molecules display almost the same rotational relaxation in all the bile salts. The observation indicates that after intercalation inside the hydrophobic pocket, neutral ellipticine molecules experience similar confinement in all the bile salts.


Assuntos
Antineoplásicos/química , Ácidos e Sais Biliares/química , Cátions/química , Portadores de Fármacos , Elipticinas/química , Interações Hidrofóbicas e Hidrofílicas , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Fotoquímica , Espectrofotometria Ultravioleta
17.
Phys Chem Chem Phys ; 16(11): 5368-81, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24501742

RESUMO

Interaction of hen egg white lysozyme with different liposomes made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) was studied by circular dichroism (CD), steady state and time resolved fluorescence spectroscopy. We used anticancer drug ellipticine and studied its entrapment and release from liposomes upon interaction with lysozyme. The molecular docking study revealed that ellipticine preferably binds to the hydrophobic pocket of lysozyme (Kbinding = 1.09 × 10(6) M(-1)). The binding was also supported by spectroscopic evidence. Addition of lysozyme to the ellipticine impregnated liposomes caused quenching of the fluorescence intensity of ellipticine as lysozyme induces hydration and phospholipid rearrangement in the bilayers leading to the leakage of drug molecules. The extent of quenching depends on the prehydration level of liposomes. Maximum quenching took place in the DPPC liposome as it is the least hydrated while minimum quenching was observed in the DOPC liposome having the highest hydration level among all the lipids. The time resolved studies revealed that both the fast and slow lifetime components of ellipticine decrease significantly with addition of lysozyme. This fact is attributed to lysozyme induced hydration and rupture of bilayers. It is revealed that upon addition of lysozyme to liposomes, the amplitude of the fast component increases and that of the slow component decreases which imply that the drug molecules are released from liposomes and subsequent migration takes place to the aqueous phase. Molecular docking studies and fluorescence measurements indicate that ellipticine after removal from the liposome binds to the hydrophobic binding site of lysozyme.


Assuntos
Antineoplásicos/química , Elipticinas/química , Lipossomos , Muramidase/metabolismo , Fosfatidilcolinas/metabolismo , Animais , Galinhas , Feminino , Simulação de Acoplamento Molecular , Sondas Moleculares
18.
J Phys Chem Lett ; 15(16): 4468-4476, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38631022

RESUMO

The underlying mechanism and intermediate formation in the self-assembly of aromatic amino acids, peptides, and proteins remain elusive despite numerous reports. We, for the first time, report that one can stabilize the intermediates by tuning the metal ion-amino acid interaction. Microscopic and spectroscopic investigations of the self-assembly of carboxybenzyl (Z)-protected phenylalanine (ZF) reveal that the bivalent metal ions eventually lead to the formation of fibrillar networks similar to blank ZF whereas the trivalent ions develop vesicle-like intermediates that do not undergo fibrillation for a prolonged time. The time-lapse measurement of surface charge reveals that the surface charge of blank ZF and in the presence of bivalent metal ions changes from a negative value to zero, implying unstable intermediates leading to the fibril network. Strikingly, a prominent charge inversion from an initial negative value to a positive value in the presence of trivalent metal ions imparts unusual stability to the metastable intermediates.


Assuntos
Fenilalanina , Fenilalanina/química , Propriedades de Superfície , Íons/química , Metais/química
19.
Phys Chem Chem Phys ; 14(44): 15369-78, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23059904

RESUMO

The entrapment of anticancer drug ellipticine in the dipalmitoylphosphocholine (DPPC) liposome and its release by addition of three different bile salts, namely sodium deoxycholate, cholate and taurocholate, have been studied by steady state and time resolved fluorescence spectroscopy. We found that the release of the drug from a liposome depends on the degree of penetration of bile salts. Among the three bile salts, deoxycholate was most effective in releasing the drug from the hydrocarbon core of the liposome because of its high insertion ability owing to its maximum hydrophobicity. The time resolved studies revealed that with addition of bile salt to the liposome solution, ellipticine molecules were removed from the hydrocarbon core and were entrapped in an interfacial region of liposomes by electrostatic interaction. This led to an increase in the shorter lifetime component. On the other hand, the longer lifetime component decreased because bile salts wet the hydrocarbon core of the liposome by carrying hydrogen bonded water. Entrapment of ellipticine in the interfacial region was also supported by an increase in the rotational relaxation time with addition of bile salt.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Antineoplásicos/química , Ácidos e Sais Biliares/química , Elipticinas/química , Lipossomos/síntese química , Colatos/química , Ácido Desoxicólico/química , Lipossomos/química , Estrutura Molecular , Processos Fotoquímicos , Espectrometria de Fluorescência , Ácido Taurocólico/química
20.
J Phys Chem Lett ; 13(44): 10409-10417, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36322139

RESUMO

The self-assembly of aromatic amino acids has been widely studied due to their ability to form well-defined amyloid-like fibrillar structures. Herein, for the first time, we report the existence of different metastable intermediate states of diverse morphologies, for example, droplets, spheres, vesicles, flowers, and toroids, that are sequentially formed in aqueous medium during the self-assembly process of phenylalanine in the presence of different divalent (Zn2+, Cd2+, and Hg2+) and trivalent (Al3+, Ga3+, and In3+) metal ions having low pKa values. Due to metal ion-amino acid coordination and strong hydrophobic interaction induced by these metal ions, spherical aggregates are obtained at the initial stage of the structural evolution and further transformed into other intermediate states. Our work may facilitate understanding of the role of metal ions in the amino acid self-assembly process and broaden future applications of the obtained nanostructures in drug delivery, tissue engineering, bioimaging, biocatalysis, and other fields.


Assuntos
Metais , Fenilalanina , Fenilalanina/química , Interações Hidrofóbicas e Hidrofílicas , Amiloide/química , Aminoácidos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA