Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 563(7730): 270-274, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401837

RESUMO

The 5-HT3A serotonin receptor1, a cationic pentameric ligand-gated ion channel (pLGIC), is the clinical target for management of nausea and vomiting associated with radiation and chemotherapies2. Upon binding, serotonin induces a global conformational change that encompasses the ligand-binding extracellular domain (ECD), the transmembrane domain (TMD) and the intracellular domain (ICD), the molecular details of which are unclear. Here we present two serotonin-bound structures of the full-length 5-HT3A receptor in distinct conformations at 3.32 Å and 3.89 Å resolution that reveal the mechanism underlying channel activation. In comparison to the apo 5-HT3A receptor, serotonin-bound states underwent a large twisting motion in the ECD and TMD, leading to the opening of a 165 Å permeation pathway. Notably, this motion results in the creation of lateral portals for ion permeation at the interface of the TMD and ICD. Combined with molecular dynamics simulations, these structures provide novel insights into conformational coupling across domains and functional modulation.


Assuntos
Microscopia Crioeletrônica , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/ultraestrutura , Serotonina/química , Serotonina/metabolismo , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Sítios de Ligação , Condutividade Elétrica , Feminino , Ativação do Canal Iônico , Transporte de Íons , Camundongos , Simulação de Dinâmica Molecular , Movimento , Conformação Proteica , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo , Xenopus laevis
2.
Subcell Biochem ; 96: 373-408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252737

RESUMO

5-hydroxytryptamine receptor subtype 3 (5-HT3R) is a pentameric ligand-gated ion channel (pLGIC) involved in neuronal signaling. It is best known for its prominent role in gut-CNS signaling though there is growing interest in its other functions, particularly in modulating non-serotonergic synaptic activity. Recent advances in structural biology have provided mechanistic understanding of 5-HT3R function and present new opportunities for the field. This chapter gives a broad overview of 5-HT3R from a physiological and structural perspective and then discusses the specific details of ion permeation, ligand binding and allosteric coupling between these two events. Biochemical evidence is summarized and placed within a physiological context. This perspective underscores the progress that has been made as well as outstanding challenges and opportunities for future 5-HT3R research.


Assuntos
Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/metabolismo , Humanos
3.
Nature ; 501(7465): 121-4, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23892782

RESUMO

Application of a specific stimulus opens the intracellular gate of a K(+) channel (activation), yielding a transient period of ion conduction until the selectivity filter spontaneously undergoes a conformational change towards a non-conductive state (inactivation). Removal of the stimulus closes the gate and allows the selectivity filter to interconvert back to its conductive conformation (recovery). Given that the structural differences between the conductive and inactivated filter are very small, it is unclear why the recovery process can take up to several seconds. The bacterial K(+) channel KcsA from Streptomyces lividans can be used to help elucidate questions about channel inactivation and recovery at the atomic level. Although KcsA contains only a pore domain, without voltage-sensing machinery, it has the structural elements necessary for ion conduction, activation and inactivation. Here we reveal, by means of a series of long molecular dynamics simulations, how the selectivity filter is sterically locked in the inactive conformation by buried water molecules bound behind the selectivity filter. Potential of mean force calculations show how the recovery process is affected by the buried water molecules and the rebinding of an external K(+) ion. A kinetic model deduced from the simulations shows how releasing the buried water molecules can stretch the timescale of recovery to seconds. This leads to the prediction that reducing the occupancy of the buried water molecules by imposing a high osmotic stress should accelerate the rate of recovery, which was verified experimentally by measuring the recovery rate in the presence of a 2-molar sucrose concentration.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Simulação de Dinâmica Molecular , Canais de Potássio/química , Canais de Potássio/metabolismo , Água/farmacologia , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Cinética , Potássio/metabolismo , Conformação Proteica , Streptomyces lividans/química , Sacarose/farmacologia , Termodinâmica , Água/química , Água/metabolismo
4.
J Phys Chem A ; 120(39): 7634-7640, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27654631

RESUMO

Photoinduced cleavage of the bond between the central Si atom in porphyrin macrocycles and the neighboring carbon atom of an axial alkyl ligand is investigated by both experimental and computational tools. Photolysis and electron paramagnetic resonance measurements indicate that the Si-C bond cleavage of Si-phthalocyanine occurs through a homolytic process. The homolytic process follows a low-lying electronic excitation of about 1.8 eV that destabilizes the carbide bond of similar bond dissociation energy. Using electronic structure calculations, we provide insight into the nature of the excited state and the resulting photocleavage mechanism. We explain this process by finding that the electronic excited state is of a charge transfer character from the axial ligand toward the macrocycle in the reverse direction of the ground state polarization. We find that the homolytic process yielding the radical intermediate is energetically the most stable mechanistic route. Furthermore, we demonstrate using our computational approach that changing the phthalocyanine to smaller ring system enhances the homolytic photocleavage of the Si-C bond by reducing the energetic barrier in the relevant excited states.

5.
Nature ; 466(7303): 272-5, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613845

RESUMO

The coupled interplay between activation and inactivation gating is a functional hallmark of K(+) channels. This coupling has been experimentally demonstrated through ion interaction effects and cysteine accessibility, and is associated with a well defined boundary of energetically coupled residues. The structure of the K(+) channel KcsA in its fully open conformation, in addition to four other partial channel openings, richly illustrates the structural basis of activation-inactivation gating. Here, we identify the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that, as a consequence of the hinge-bending and rotation of the TM2 helix, the aromatic ring of Phe 103 tilts towards residues Thr 74 and Thr 75 in the pore-helix and towards Ile 100 in the neighbouring subunit. This allows the network of hydrogen bonds among residues Trp 67, Glu 71 and Asp 80 to destabilize the selectivity filter, allowing entry to its non-conductive conformation. Mutations at position 103 have a size-dependent effect on gating kinetics: small side-chain substitutions F103A and F103C severely impair inactivation kinetics, whereas larger side chains such as F103W have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open-state interaction-energies between Phe 103 and the surrounding residues. We probed similar interactions in the Shaker K(+) channel where inactivation was impaired in the mutant I470A. We propose that side-chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K(+) channels.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/química , Canais de Potássio/metabolismo , Streptomyces lividans/química , Regulação Alostérica , Proteínas de Bactérias/genética , Cisteína/genética , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fenilalanina/metabolismo , Canais de Potássio/genética , Conformação Proteica , Superfamília Shaker de Canais de Potássio/química , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Relação Estrutura-Atividade
7.
J Biol Chem ; 289(5): 3013-25, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24338475

RESUMO

Ligand binding at the extracellular domain of pentameric ligand-gated ion channels initiates a relay of conformational changes that culminates at the gate within the transmembrane domain. The interface between the two domains is a key structural entity that governs gating. Molecular events in signal transduction at the interface are poorly defined because of its intrinsically dynamic nature combined with functional modulation by membrane lipid and water vestibules. Here we used electron paramagnetic resonance spectroscopy to delineate protein motions underlying Gloeobacter violaceus ligand-gated ion channel gating in a membrane environment and report the interface conformation in the closed and the desensitized states. Extensive intrasubunit interactions were observed in the closed state that are weakened upon desensitization and replaced by newer intersubunit contacts. Gating involves major rearrangements of the interfacial loops, accompanied by reorganization of the protein-lipid-water interface. These structural changes may serve as targets for modulation of gating by lipids, alcohols, and amphipathic drug molecules.


Assuntos
Cianobactérias/química , Ativação do Canal Iônico/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/química , Proteínas de Membrana/química , Álcoois/metabolismo , Regulação Alostérica , Cianobactérias/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
8.
Nat Struct Mol Biol ; 31(4): 598-609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177669

RESUMO

Hyperactivity of serotonin 3 receptors (5-HT3R) underlies pathologies associated with irritable bowel syndrome and chemotherapy-induced nausea and vomiting. Setrons, a class of high-affinity competitive antagonists, are used in the treatment of these conditions. Although generally effective for chemotherapy-induced nausea and vomiting, the use of setrons for treating irritable bowel syndrome has been impaired by adverse side effects. Partial agonists are now being considered as an alternative strategy, with potentially less severe side effects than full antagonists. However, a structural understanding of how these ligands work is lacking. Here, we present high-resolution cryogenic electron microscopy structures of the mouse 5-HT3AR in complex with partial agonists (SMP-100 and ALB-148471) captured in pre-activated and open-like conformational states. Molecular dynamics simulations were used to assess the stability of drug-binding poses and interactions with the receptor over time. Together, these studies reveal mechanisms for the functional differences between orthosteric partial agonists, full agonists and antagonists of the 5-HT3AR.


Assuntos
Antineoplásicos , Síndrome do Intestino Irritável , Camundongos , Animais , Serotonina/farmacologia , Vômito , Náusea
9.
J Biol Chem ; 287(22): 18467-77, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22474322

RESUMO

Crystal structures of Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated prokaryotic homologue of pentameric ligand-gated ion channel (LGIC) from G. violaceus, have provided high-resolution models of the channel architecture and its role in selective ion conduction and drug binding. However, it is still unclear which functional states of the LGIC gating scheme these crystal structures represent. Much of this uncertainty arises from a lack of thorough understanding of the functional properties of these prokaryotic channels. To elucidate the molecular events that constitute gating, we have carried out an extensive characterization of GLIC function and dynamics in reconstituted proteoliposomes by patch clamp measurements and EPR spectroscopy. We find that GLIC channels show rapid activation upon jumps to acidic pH followed by a time-dependent loss of conductance because of desensitization. GLIC desensitization is strongly coupled to activation and is modulated by voltage, permeant ions, pore-blocking drugs, and membrane cholesterol. Many of these properties are parallel to functions observed in members of eukaryotic LGIC. Conformational changes in loop C, measured by site-directed spin labeling and EPR spectroscopy, reveal immobilization during desensitization analogous to changes in LGIC and acetylcholine binding protein. Together, our studies suggest conservation of mechanistic aspects of desensitization among LGICs of prokaryotic and eukaryotic origin.


Assuntos
Cianobactérias/metabolismo , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Concentração de Íons de Hidrogênio , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/química , Lidocaína/farmacologia , Ligantes , Proteolipídeos
10.
J Biol Chem ; 287(44): 36864-72, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22977232

RESUMO

Direct structural insight into the mechanisms underlying activation and desensitization remain unavailable for the pentameric ligand-gated channel family. Here, we report the structural rearrangements underlying gating transitions in membrane-embedded GLIC, a prokaryotic homologue, using site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. We particularly probed the conformation of pore-lining second transmembrane segment (M2) under conditions that favor the closed and the ligand-bound desensitized states. The spin label mobility, intersubunit spin-spin proximity, and the solvent-accessibility parameters in the two states clearly delineate the underlying protein motions within M2. Our results show that during activation the extracellular hydrophobic region undergoes major changes involving an outward translational movement, away from the pore axis, leading to an increase in the pore diameter, whereas the lower end of M2 remains relatively immobile. Most notably, during desensitization, the intervening polar residues in the middle of M2 move closer to form a solvent-occluded barrier and thereby reveal the location of a distinct desensitization gate. In comparison with the crystal structure of GLIC, the structural dynamics of the channel in a membrane environment suggest a more loosely packed conformation with water-accessible intrasubunit vestibules penetrating from the extracellular end all the way to the middle of M2 in the closed state. These regions have been implicated to play a major role in alcohol and drug modulation. Overall, these findings represent a key step toward understanding the fundamentals of gating mechanisms in this class of channels.


Assuntos
Proteínas de Bactérias/química , Cianobactérias , Canais Iônicos de Abertura Ativada por Ligante/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Lipossomos/química , Potenciais da Membrana , Modelos Moleculares , Técnicas de Patch-Clamp , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície
11.
Proc Natl Acad Sci U S A ; 107(12): 5435-40, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20207950

RESUMO

Direct structural insights on the fundamental mechanisms of permeation, selectivity, and gating remain unavailable for the Na(+) and Ca(2+) channel families. Here, we report the spectroscopic structural characterization of the isolated Voltage-Sensor Domain (VSD) of the prokaryotic Na(+) channel NaChBac in a lipid bilayer. Site-directed spin-labeling and EPR spectroscopy were carried out for 118 mutants covering all of the VSD. EPR environmental data were used to unambiguously assign the secondary structure elements, define membrane insertion limits, and evaluate the activated conformation of the isolated-VSD in the membrane using restrain-driven molecular dynamics simulations. The overall three-dimensional fold of the NaChBac-VSD closely mirrors those seen in KvAP, Kv1.2, Kv1.2-2.1 chimera, and MlotiK1. However, in comparison to the membrane-embedded KvAP-VSD, the structural dynamics of the NaChBac-VSD reveals a much tighter helix packing, with subtle differences in the local environment of the gating charges and their interaction with the rest of the protein. Using cell complementation assays we show that the NaChBac-VSD can provide a conduit to the transport of ions in the resting or "down" conformation, a feature consistent with our EPR water accessibility measurements in the activated or "up" conformation. These results suggest that the overall architecture of VSD's is remarkably conserved among K(+) and Na(+) channels and that pathways for gating-pore currents may be intrinsic to most voltage-sensors. Cell complementation assays also provide information about the putative location of the gating charges in the "down/resting" state and hence a glimpse of the extent of conformational changes during activation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Canais de Sódio/química , Canais de Sódio/metabolismo , Fenômenos Biofísicos , Espectroscopia de Ressonância de Spin Eletrônica , Ativação do Canal Iônico , Bicamadas Lipídicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica , Água
12.
Nat Commun ; 14(1): 1363, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914669

RESUMO

Glycine Receptors (GlyRs) provide inhibitory neuronal input in the spinal cord and brainstem, which is critical for muscle coordination and sensory perception. Synaptic GlyRs are a heteromeric assembly of α and ß subunits. Here we present cryo-EM structures of full-length zebrafish α1ßBGlyR in the presence of an antagonist (strychnine), agonist (glycine), or agonist with a positive allosteric modulator (glycine/ivermectin). Each structure shows a distinct pore conformation with varying degrees of asymmetry. Molecular dynamic simulations found the structures were in a closed (strychnine) and desensitized states (glycine and glycine/ivermectin). Ivermectin binds at all five interfaces, but in a distinct binding pose at the ß-α interface. Subunit-specific features were sufficient to solve structures without a fiduciary marker and to confirm the 4α:1ß stoichiometry recently observed. We also report features of the extracellular and intracellular domains. Together, our results show distinct compositional and conformational properties of α1ßGlyR and provide a framework for further study of this physiologically important channel.


Assuntos
Receptores de Glicina , Estricnina , Animais , Receptores de Glicina/metabolismo , Estricnina/farmacologia , Peixe-Zebra/metabolismo , Ivermectina/farmacologia , Glicina/metabolismo
13.
Nat Commun ; 13(1): 4862, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982060

RESUMO

Nociception and motor coordination are critically governed by glycine receptor (GlyR) function at inhibitory synapses. Consequentially, GlyRs are attractive targets in the management of chronic pain and in the treatment of several neurological disorders. High-resolution mechanistic details of GlyR function and its modulation are just emerging. While it has been known that cannabinoids such as Δ9-tetrahydrocannabinol (THC), the principal psychoactive constituent in marijuana, potentiate GlyR in the therapeutically relevant concentration range, the molecular mechanism underlying this effect is still not understood. Here, we present Cryo-EM structures of full-length GlyR reconstituted into lipid nanodisc in complex with THC under varying concentrations of glycine. The GlyR-THC complexes are captured in multiple conformational states that reveal the basis for THC-mediated potentiation, manifested as different extents of opening at the level of the channel pore. Taken together, these structural findings, combined with molecular dynamics simulations and functional analysis, provide insights into the potential THC binding site and the allosteric coupling to the channel pore.


Assuntos
Canabinoides , Receptores de Glicina , Canabinoides/farmacologia , Dronabinol/farmacologia , Glicina/farmacologia , Lipídeos , Receptores de Glicina/metabolismo
14.
Biophys J ; 100(10): 2387-93, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21575572

RESUMO

In the prokaryotic potassium channel KcsA activation gating at the inner bundle gate is followed by C-type inactivation at the selectivity filter. Entry into the C-type inactivated state has been directly linked to the strength of the H-bond interaction between residues Glu-71 and Asp-80 behind the filter, and is allosterically triggered by the rearrangement of the inner bundle gate. Here, we show that H-bond pairing between residues Trp-67 and Asp-80, conserved in most K⁺ channels, constitutes another critical interaction that determines the rate and extent of KcsA C-type inactivation. Disruption of the equivalent interaction in Shaker (Trp-434-Asp-447) and Kv1.2 (Trp-366-Asp-379) leads also to modulation of the inactivation process, suggesting that these residues also play an analogous role in the inactivation gating of Kv channels. The present results show that in KcsA C-type inactivation gating is governed by a multipoint hydrogen-bond network formed by the triad Trp-67-Glu71-Asp-80. This triad exerts a critical role in the dynamics and conformational stability of the selectivity filter and might serve as a general modulator of selectivity filter gating in other members of the K⁺ channel family.


Assuntos
Proteínas de Bactérias/metabolismo , Ativação do Canal Iônico , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Ácido Aspártico/metabolismo , Proteínas de Bactérias/química , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Canais de Potássio/química , Ligação Proteica , Ratos , Triptofano/metabolismo , Xenopus
15.
Methods Enzymol ; 652: 81-103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059291

RESUMO

Pentameric ligand-gated ion channels (pLGICs) are central players in synaptic neurotransmission and are targets to a range of drugs used to treat neurological disorders and pain. pLGICs are intrinsically dynamic membrane proteins that upon stimulation by neurotransmitters, undergo global conformational changes across multiple domains spanning a distance of over 165Å. The inter-domain flexibility, a feature crucial for their function as signal transducers in chemical synapses, has been problematic in the efforts toward determining high-resolution structures. Earlier structural studies tackled this issue with a variety of strategies that included partial truncation of flexible domains and the use of antibodies and small-molecule inhibitors to restrict domain movement. With the recent advances in cryo-electron microscopy and single-particle analysis, many of these limitations have been overcome. Here, we describe the methods used in the recombinant expression and purification of full-length constructs of two members of the pentameric ligand-gated ion channel family and the approaches used for capturing multiple conformations in cryo-EM imaging.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Microscopia Crioeletrônica , Canais Iônicos de Abertura Ativada por Ligante/genética , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Sinapses , Transmissão Sináptica
16.
Structure ; 16(3): 398-409, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334215

RESUMO

A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here, using EPR spectroscopy, we show that the isolated VSD of KvAP can remain monomeric in a reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extending deep into the membrane around S3, a scaffold conducive to transport of protons/cations, are intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and suggests a rotation of 70 degrees -100 degrees relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels, and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs.


Assuntos
Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Sequência de Aminoácidos , Canal de Potássio Kv1.2/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
17.
Elife ; 92020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33063666

RESUMO

Serotonin receptors (5-HT3AR) play a crucial role in regulating gut movement, and are the principal target of setrons, a class of high-affinity competitive antagonists, used in the management of nausea and vomiting associated with radiation and chemotherapies. Structural insights into setron-binding poses and their inhibitory mechanisms are just beginning to emerge. Here, we present high-resolution cryo-EM structures of full-length 5-HT3AR in complex with palonosetron, ondansetron, and alosetron. Molecular dynamic simulations of these structures embedded in a fully-hydrated lipid environment assessed the stability of ligand-binding poses and drug-target interactions over time. Together with simulation results of apo- and serotonin-bound 5-HT3AR, the study reveals a distinct interaction fingerprint between the various setrons and binding-pocket residues that may underlie their diverse affinities. In addition, varying degrees of conformational change in the setron-5-HT3AR structures, throughout the channel and particularly along the channel activation pathway, suggests a novel mechanism of competitive inhibition.


Serotonin is perhaps best known as a chemical messenger in the brain, where it regulates mood, appetite and sleep. But as a hormone, serotonin works in other parts of the body too. Serotonin is predominantly made in the gut, where it binds receptor proteins that help to regulate the movement of substances through the gastrointestinal tract, aiding digestion. However, a surge in serotonin release in the gut induces vomiting and nausea, which commonly happens as a side effect of treating cancer with radiotherapy and chemotherapy. Anti-nausea drugs used to manage and prevent the severe nausea and vomiting experienced by cancer patients are therefore designed to target serotonin receptors in the gut. These drugs, called setrons, work by binding to serotonin receptors before serotonin does, essentially neutralising the effect of any surplus serotonin. Although they generally target serotonin receptors in the same way, some setrons are more efficient than others and can provide longer lasting relief. Clarifying exactly how each drug interacts with its target receptor might help to explain their differential effects. Basak et al. used a technique called cryo-electron microscopy to examine the interactions between three common anti-nausea drugs (palonosetron, ondansetron and alosetron) and one type of serotonin receptor, 5-HT3AR. The experiments showed that each drug changed the shape of 5-HT3AR, thereby inhibiting its activity to varying degrees. Further analysis identified a distinct 'interaction fingerprint' for the three setron drugs studied, showing which of the receptors' subunits each drug binds to. Simulations of their interactions also showed that water molecules play a crucial role in the process, exposing the binding pocket on the receptor's surface where the drugs attach. This work provides a structural blueprint of the interactions between anti-nausea drugs and serotonin receptors. The structures could guide the development of new and improved therapies to treat nausea and vomiting brought on by cancer treatments.


Assuntos
Receptores 5-HT3 de Serotonina/química , Antagonistas da Serotonina/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Microscopia Crioeletrônica , Feminino , Humanos , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Oócitos/química , Ligação Proteica , Conformação Proteica , Serotonina/química , Xenopus laevis
18.
Nat Commun ; 11(1): 3752, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719334

RESUMO

Glycinergic synapses play a central role in motor control and pain processing in the central nervous system. Glycine receptors (GlyRs) are key players in mediating fast inhibitory neurotransmission at these synapses. While previous high-resolution structures have provided insights into the molecular architecture of GlyR, several mechanistic questions pertaining to channel function are still unanswered. Here, we present Cryo-EM structures of the full-length GlyR protein complex reconstituted into lipid nanodiscs that are captured in the unliganded (closed), glycine-bound (open and desensitized), and allosteric modulator-bound conformations. A comparison of these states reveals global conformational changes underlying GlyR channel gating and modulation. The functional state assignments were validated by molecular dynamics simulations, and the observed permeation events are in agreement with the anion selectivity and conductance of GlyR. These studies provide the structural basis for gating, ion selectivity, and single-channel conductance properties of GlyR in a lipid environment.


Assuntos
Ativação do Canal Iônico , Lipídeos/química , Nanopartículas/química , Receptores de Glicina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Glicina/metabolismo , Simulação de Dinâmica Molecular , Neurotransmissores/metabolismo , Conformação Proteica , Receptores de Glicina/ultraestrutura , Xenopus , Proteínas de Peixe-Zebra/ultraestrutura
19.
Nat Commun ; 10(1): 3225, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324772

RESUMO

Serotonin receptor (5-HT3AR) is the most common therapeutic target to manage the nausea and vomiting during cancer therapies and in the treatment of irritable bowel syndrome. Setrons, a class of competitive antagonists, cause functional inhibition of 5-HT3AR in the gastrointestinal tract and brainstem, acting as effective anti-emetic agents. Despite their prevalent use, the molecular mechanisms underlying setron binding and inhibition of 5-HT3AR are not fully understood. Here, we present the structure of granisetron-bound full-length 5-HT3AR solved by single-particle cryo-electron microscopy to 2.92 Å resolution. The reconstruction reveals the orientation of granisetron in the orthosteric site with unambiguous density for interacting sidechains. Molecular dynamics simulations and electrophysiology confirm the granisetron binding orientation and the residues central for ligand recognition. Comparison of granisetron-bound 5-HT3AR with the apo and serotonin-bound structures, reveals key insights into the mechanism underlying 5-HT3AR inhibition.


Assuntos
Receptores 5-HT3 de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Serotonina/farmacologia , Animais , Antieméticos/farmacologia , Sítios de Ligação , Tronco Encefálico , Microscopia Crioeletrônica , Trato Gastrointestinal , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Receptores 5-HT3 de Serotonina/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA