Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
Pharm Res ; 40(7): 1601-1631, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811809

RESUMO

Long-acting injectable (LAI) formulations can provide several advantages over the more traditional oral formulation as drug product opportunities. LAI formulations can achieve sustained drug release for extended periods of time, which results in less frequent dosing requirements leading to higher patient adherence and more optimal therapeutic outcomes. This review article will provide an industry perspective on the development and associated challenges of long-acting injectable formulations. The LAIs described herein include polymer-based formulations, oil-based formulations, and crystalline drug suspensions. The review discusses manufacturing processes, including quality controls, considerations of the Active Pharmaceutical Ingredient (API), biopharmaceutical properties and clinical requirements pertaining to LAI technology selection, and characterization of LAIs through in vitro, in vivo and in silico approaches. Lastly, the article includes a discussion around the current lack of suitable compendial and biorelevant in vitro models for the evaluation of LAIs and its subsequent impact on LAI product development and approval.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Preparações de Ação Retardada , Injeções , Liberação Controlada de Fármacos
2.
J Control Release ; 92(1-2): 173-87, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-14499195

RESUMO

The objective of the study was to investigate the effect of particle size of nano- and microparticles formulated from poly(D,L-lactide-co-glycolide) (50:50 PLGA) on polymer degradation and protein release. Since the surface area to volume ratio is inversely proportional to the particle size, it is hypothesized that the particle size would influence the polymer degradation as well as the release of the encapsulated protein. PLGA nano- and microparticles of approximate mean diameters of 0.1, 1 and 10 microm, containing bovine serum albumin as a model protein, were formulated using a multiple water-in-oil-in-water emulsion solvent evaporation technique. These particles were incubated at 37 degrees C in phosphate-buffered saline (pH 7.4, 154 mM) and the particles were characterized at various time points for molecular weight of polymer, surface-associated polyvinyl alcohol content (PVA), and the particle surface topology using scanning electron microscopy. The supernatants from the above study were analyzed for the released protein and PVA content. Polymer degradation was found to be biphasic in both nano- and microparticles, with an initial rapid degradation for 20-30 days followed by a slower degradation phase. The 0.1 microm diameter nanoparticles demonstrated relatively higher polymer degradation rate (P<0.05) during the initial phase as compared to the larger size microparticles (first order degradation rate constants of 0.028 day(-1), 0.011 day(-1) and 0.018 day(-1) for 0.1, 1 and 10 microm particles, respectively), however the degradation rates were almost similar (0.008 to 0.009 day(-1)) for all size particles during the later phase. All size particles maintained their structural integrity during the initial degradation phase; however, this was followed by pore formation, deformation and fusion of particles during the slow degradation phase. Protein release from 0.1 and 1 microm particles was greater than that from 10 microm size particles. In conclusion, the polymer degradation rates in vitro were not substantially different for different size particles despite a 10- and 100-fold greater surface area to volume ratio for 0.1 microm size nanoparticles as compared to 1 and 10 microm size microparticles, respectively. Relatively higher amounts of the surface-associated PVA found in the smaller-size nanoparticles (0.1 microm) as compared to the larger-size microparticles could explain some of the observed degradation results with different size particles.


Assuntos
Ácido Láctico/farmacocinética , Microesferas , Nanotecnologia/métodos , Ácido Poliglicólico/farmacocinética , Polímeros/farmacocinética , Soroalbumina Bovina/farmacocinética , Animais , Bovinos , Ácido Láctico/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/química , Soroalbumina Bovina/química
3.
Int J Pharm ; 409(1-2): 111-20, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21356285

RESUMO

We have previously demonstrated that the cellular association, cytotoxicity, and in vivo anti-tumor efficacy of paclitaxel are significantly greater when delivered in PLGA microparticles compared to nanoparticles. The purpose of this research is to test the hypothesis that mucoadhesive chitosan promotes adhesion of PLGA particles to mucus on the tumor epithelium, resulting in enhanced cellular association and cytotoxicity of paclitaxel. PLGA particles containing paclitaxel or Bodipy(®) were prepared and chitosan was either adsorbed or chemically conjugated to the particle surface. The cellular association and cytotoxicity of paclitaxel in 4T1 cells was determined. A 4-10 fold increase in cellular association of paclitaxel was observed when chitosan was adsorbed or conjugated to the PLGA particles. Chitosan-conjugated PLGA microparticles were most cytotoxic with an IC(50) value of 0.77 µM. Confocal microscopy demonstrated that chitosan-PLGA microparticles adhered to the surface of 4T1 cells. Pretreatment of either 4T1 cells or chitosan-PLGA particles with mucin resulted in significant increase in cellular association of paclitaxel. A linear correlation was established between theoretical amount of chitosan used and experimentally determined amount of chitosan adsorbed or conjugated to PLGA nanoparticles. In conclusion, cellular association and cytotoxicity of paclitaxel was significantly enhanced when delivered in chitosan-PLGA particles.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Quitosana/química , Ácido Láctico/química , Paclitaxel/farmacologia , Ácido Poliglicólico/química , Adesividade , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Compostos de Boro/administração & dosagem , Compostos de Boro/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Concentração Inibidora 50 , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Camundongos , Microscopia Confocal , Microesferas , Paclitaxel/administração & dosagem , Paclitaxel/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
4.
Int J Pharm ; 383(1-2): 37-44, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19747969

RESUMO

This research compares the anti-tumor efficacy of paclitaxel delivered intratumorally in PLGA nanoparticles, microparticles, or the commercial Paclitaxel Injection((R)). The hypothesis of the research is that larger PLGA microparticles adhere to mucus on the cell surface, release paclitaxel locally, and enhance cellular association of paclitaxel. PLGA-paclitaxel particles of mean diameters 315 nm, 1 microm, and 10 microm were prepared and their drug content, in vitro release, and cellular association of paclitaxel into 4T1 cells quantified. These particles were injected intratumorally into tumor xenografts, and the tumor volumes monitored over 13 days. Mean tumor volumes of the groups that received placebo and the 315 nm nanoparticles increased 2 and 1.5 times, respectively. Tumor growth was arrested in groups that received 1 microm and 10 microm microparticles. Additional cell culture studies were performed to test the hypothesis. The size-dependent increase in cellular concentration of paclitaxel was independent of duration of incubation of PLGA particles with 4T1 cells, and was enhanced 1.5 times by coating the particles or 4T1 cells with mucin. These particles were not internalized by clathrin-mediated endocytosis or macropinocytosis. In conclusion, PLGA microparticles sustained drug release, increased cellular concentration, and enhanced anti-tumor efficacy of paclitaxel compared to nanoparticles and Paclitaxel Injection.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Microesferas , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Animais , Antineoplásicos Fitogênicos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA