Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 15(2): e1007988, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742619

RESUMO

Cells in organ primordia undergo active proliferation at an early stage to generate sufficient number, before exiting proliferation and entering differentiation. However, how the actively proliferating cells are developmentally reprogrammed to acquire differentiation potential during organ maturation is unclear. Here, we induced a microRNA-resistant form of TCP4 at various developmental stages of Arabidopsis leaf primordium that lacked the activity of TCP4 and its homologues and followed its effect on growth kinematics. By combining this with spatio-temporal gene expression analysis, we show that TCP4 commits leaf cells within the transition zone to exit proliferation and enter differentiation. A 24-hour pulse of TCP4 activity was sufficient to impart irreversible differentiation competence to the actively dividing cells. A combination of biochemical and genetic analyses revealed that TCP4 imparts differentiation competence by promoting auxin response as well as by directly activating HAT2, a HD-ZIP II transcription factor-encoding gene that also acts downstream to auxin response. Our study offers a molecular link between the two major organ maturation factors, CIN-like TCPs and HD-ZIP II transcription factors and explains how TCP activity restricts the cell number and final size in a leaf.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fenômenos Biomecânicos , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Tamanho Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233154

RESUMO

Many plants naturally synthesize and secrete secondary metabolites that exert an allelopathic effect, offering compelling alternatives to chemical herbicides. These natural herbicides are highly important for sustainable agricultural practices. Ailanthone is the chemical responsible for the herbicidal effect of Ailanthus altissima, or "tree of heaven". The molecular studies involving ailanthone's effect on plant growth are limited. In the current study, we combined whole-transcriptome and physiology analysis of three Arabidopsis thaliana ecotypes treated with ailanthone to identify the effect of this allelopathic chemical on genes and plant growth. Our physiology results showed 50% reduced root growth, high proline accumulation, and high reactive-oxygen-species accumulation in response to ailanthone stress. Deep transcriptome analysis revealed 528, 473, and 482 statistically significant differentially expressed genes for Col-0, Cvi-0, and U112-3 under ailanthone stress, including 131 genes shared among the three accessions. The common genes included 82 upregulated and 42 downregulated genes and varied in expression at least twofold. The study also revealed that 34 of the 131 genes had a similar expression pattern when Arabidopsis seedlings were subjected to other herbicides. Differentially expressed genes significantly induced in response to ailanthone included DTXL1, DTX1, ABCC3, NDB4, UGT74E2, and AZI1. Pathways of stress, development and hormone metabolism were significantly altered under ailanthone stress. These results suggest that ailanthone triggers a significant stress response in multiple pathways similar to other herbicides.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Herbicidas , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Herbicidas/metabolismo , Herbicidas/farmacologia , Hormônios/metabolismo , Oxigênio/metabolismo , Prolina/metabolismo , Quassinas , Estresse Fisiológico/genética , Transcriptoma
3.
Plant Physiol ; 181(4): 1587-1599, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31575625

RESUMO

Trichomes are the first line of defense on the outer surface of plants against biotic and abiotic stresses. Because trichomes on leaf surfaces originate from the common epidermal progenitor cells that also give rise to pavement cells and stomata, their density and distribution are under strict genetic control. Regulators of trichome initiation have been identified and incorporated into a biochemical pathway wherein an initiator complex promotes trichome fate in an epidermal progenitor cell, while an inhibitor complex suppresses it in the neighboring cells. However, it is unclear how these regulator proteins, especially the negative regulators, are induced by upstream transcription factors and integrated with leaf morphogenesis. Here, we show that the Arabidopsis (Arabidopsis thaliana) class II TCP proteins activate TRICHOMELESS1 (TCL1) and TCL2, the two established negative regulators of trichome initiation, and reduce trichome density on leaves. Loss-of-function of these TCP proteins increased trichome density whereas TCP4 gain-of-function reduced trichome number. TCP4 binds to the upstream regulatory elements of both TCL1 and TCL 2 and directly promotes their transcription. Further, the TCP-induced trichome suppression is independent of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE family of transcription factors, proteins that also reduce trichome density at later stages of plant development. Our work demonstrates that the class II TCP proteins couple leaf morphogenesis with epidermal cell fate determination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fatores de Transcrição/metabolismo , Tricomas/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação/genética , Folhas de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Plant J ; 93(2): 259-269, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165850

RESUMO

Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/genética , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Tricomas/fisiologia
5.
Plant Cell ; 28(9): 2117-2130, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27597774

RESUMO

Cell expansion is an essential process in plant morphogenesis and is regulated by the coordinated action of environmental stimuli and endogenous factors, such as the phytohormones auxin and brassinosteroid. Although the biosynthetic pathways that generate these hormones and their downstream signaling mechanisms have been extensively studied, the upstream transcriptional network that modulates their levels and connects their action to cell morphogenesis is less clear. Here, we show that the miR319-regulated TCP (TEOSINTE BRANCHED1, CYCLODEA, PROLIFERATING CELL FACTORS) transcription factors, notably TCP4, directly activate YUCCA5 transcription and integrate the auxin response to a brassinosteroid-dependent molecular circuit that promotes cell elongation in Arabidopsis thaliana hypocotyls. Furthermore, TCP4 modulates the common transcriptional network downstream to auxin-brassinosteroid signaling, which is also triggered by environmental cues, such as light, to promote cell expansion. Our study links TCP function with the hormone response during cell morphogenesis and shows that developmental and environmental signals converge on a common transcriptional network to promote cell elongation.

6.
J Exp Bot ; 66(7): 2107-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711708

RESUMO

The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Proliferação de Células , Mapeamento Cromossômico , Cotilédone/anatomia & histologia , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Giberelinas/metabolismo , Mutação , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plântula/anatomia & histologia , Plântula/genética , Plântula/crescimento & desenvolvimento
7.
Front Plant Sci ; 13: 825341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273626

RESUMO

Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.

8.
Nat Plants ; 7(9): 1264-1275, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312497

RESUMO

Angiosperm leaves show extensive shape diversity and are broadly divided into two forms; simple leaves with intact lamina and compound leaves with lamina dissected into leaflets. The mechanistic basis of margin dissection and leaflet initiation has been inferred primarily by analysing compound-leaf architecture, and thus whether the intact lamina of simple leaves has the potential to initiate leaflets upon endogenous gene inactivation remains unclear. Here, we show that the CINCINNATA-like TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTORS (CIN-TCP) transcription factors activate the class II KNOTTED1-LIKE (KNOX-II) genes and the CIN-TCP and KNOX-II proteins together redundantly suppress leaflet initiation in simple leaves. Simultaneous downregulation of CIN-TCP and KNOX-II in Arabidopsis leads to the reactivation of the stemness genes KNOX-I and CUPSHAPED COTYLEDON (CUC) and triggers ectopic organogenesis, eventually converting the simple lamina to a super-compound form that appears to initiate leaflets indefinitely. Thus, a conserved developmental mechanism promotes simple leaf architecture in which CIN-TCP-KNOX-II forms a strong differentiation module that suppresses the KNOX-I-CUC network and leaflet initiation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Diferenciação Celular/genética , Regulação para Baixo/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Plantas Geneticamente Modificadas
9.
Curr Opin Plant Biol ; 47: 22-31, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30223186

RESUMO

Organ elaboration in plants occurs almost exclusively by an increase in cell number and size. Leaves, the planar lateral appendages of plants, are no exception. Forward and reverse genetic approaches have identified several genes whose role in leaf morphogenesis has been inferred from their primary effect on cell number and size, thereby distinguishing them as either promoters or inhibitors of cell proliferation and expansion. While such classification is useful in studying size control, a similar link between genes and shape generation is poorly understood. Computational modelling can provide a conceptual framework to re-evaluate the known genetic information and assign specific morphogenetic roles to the transcription factor-encoding genes. Here we discuss recent advances in our understanding of the roles of transcription factors in the planar growth of leaf lamina in two orthogonal dimensions.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/metabolismo , Padronização Corporal , Modelos Biológicos , Fatores de Transcrição
10.
Methods Mol Biol ; 1830: 61-79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30043364

RESUMO

Transcription factors play key regulatory roles in all the life processes across kingdoms. In plants, the genome of a typical model species such as Arabidopsis thaliana encodes over 1500 transcription factors that regulate the expression dynamics of all the genes in time and space. Therefore, studying their function by analyzing the loss and gain-of-function lines is of prime importance in basic plant biology and its agricultural application. However, the current approach of knocking out genes often causes embryonic lethal phenotype, while inactivating one or two members of a redundant gene family yields little phenotypic changes, thereby making the functional analysis a technically challenging task. In such cases, inducible knock-down or overexpression of transcription factors appears to be a more effective approach. Restricting the transcription factors in the cytoplasm by fusing them with animal glucocorticoid/estrogen receptors (GR/ER) and then re-localizing them to the nucleus by external application of animal hormone analogues has been a useful method of gene function analysis in the model plants. In this chapter, we describe the recent advancements in the GR and ER expression systems and their use in analyzing the function of transcription factors in Arabidopsis.


Assuntos
Arabidopsis/genética , MicroRNAs/metabolismo , Biologia Molecular/métodos , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Dexametasona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Glucocorticoides/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA