Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(32): 21697-21711, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39092620

RESUMO

The formation and fragmentation of negatively charged 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3-, HEHN) ionic liquid clusters were examined using a guided-ion beam tandem mass spectrometer furnished with collision-induced dissociation of selected ions with Xe atoms. Measurements included the compositions of cluster ions formed in the ionization source, and the dissociation products, cross sections, and 0 K threshold energies for individually selected cluster ions. To identify the structures of the main cluster ion series [(HEHN)n(HNO3)0-1NO3]- formed, molecular dynamics simulations were employed to create initial geometry guesses, followed by optimization at the ωB97XD/6-31+G(d,p) level of theory, from which global minimum structures were identified for reaction thermodynamics analyses. A comparison was made between the cluster formation and fragmentation in the negatively charged 2-hydroxyethylhydrazinium nitrate with those in the positive mode (reported by W. Zhou et al., Phys. Chem. Chem. Phys., 2023, 25, 17370). In both modes, the cluster ions were predominantly composed of m/z below 350; loss of a neutral 2-hydroxyethylhydrazinium nitrate ion pair represents the most important cluster fragmentation pathway, followed by intra-ion pair proton transfer-mediated 2-hydroxyethylhydrazine and HNO3 elimination; and all clusters started to dissociate at threshold energies less than 1.5 eV. The overwhelming similarities in the formation and fragmentation chemistry of positively vs. negatively charged 2-hydroxyethylhydrazinium nitrate clusters may be attributed to their inherent ionic nature and high electric conductivities.

2.
Phys Chem Chem Phys ; 25(26): 17370-17384, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37350058

RESUMO

The 2-hydroxyethylhydrazinium nitrate ([HOCH2CH2NH2NH2]+NO3-, HEHN) ionic liquid has the potential to power both electric and chemical thrusters and provide a wider range of specific impulse needs. To characterize its capabilities as an electrospray propellant, we report the formation of HEHN cluster ions in positive electrospray ionization (ESI) and their collision-induced dissociation. The experiment was carried out using ESI guided-ion beam mass spectrometry which mimics an electrospray thruster in terms of ion emission, injection into a vacuum and fragmentation in space. Measurements include compositions of primary ions in the electrospray plume and their individual dissociation product ion cross sections and threshold energies. The results were interpreted in light of theoretical modeling. To determine cluster structures that are comprised of [HE + H]+ and NO3- constituents, classical mechanics simulations were used to create initial guesses; and for clusters that are formed by reactions between ionic constituents, quasi-classical direct dynamics trajectory simulations were used to mimic covalent bond formation and structures. All candidate structures were subject to density functional theory optimization, from which global minimum structures were identified and used for construction of reaction potential energy surface. The comparison between experimental values and calculated dissociation thermodynamics was used to verify the structures for the emitted species [(HEHN)nHE + H]+, [(HEHN)n(HE)2 + H]+, [(HE)n+1 + H]+ and [(HE)nC2H4OH]+ (n = 0-2), of which [(HE)1-2 + H]+ dominates. Due to the protic nature of HEHN, cluster fragmentation can be rationalized by proton transfer-mediated elimination of HNO3, HE and HE·HNO3, and the latter two become dominant in larger clusters. [(HE)2 + H]+ and [(HE)nC2H4OH]+ contain H-bonded water and consequently are featured by water elimination in fragmentation. These findings help to evaluate ion formation and fragmentation efficiencies and their impacts on electrospray propulsion.

3.
Phys Chem Chem Phys ; 25(9): 6602-6625, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36806836

RESUMO

The composition of the products and the mechanistic routes for the reaction of the hypergolic ionic liquid (HIL) 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH]) and nitric acid (HNO3) at various concentrations from 10% to 70% were explored using a contactless single droplet merging within an ultrasonic levitation setup in an inert atmosphere of argon to reveal the initial steps that cause hypergolicity. The reactions were initiated through controlled droplet-merging manipulation triggered by a frequency chirp pulse amplitude modulation. Utilizing the high-speed optical and infrared cameras surrounding the levitation process chamber, intriguing visual images were unveiled: (i) extensive gas release and (ii) temperature rises of up to 435 K in the merged droplets. The gas development was validated qualitatively and quantitatively with Fourier Transform Infrared Spectroscopy (FTIR) indicating the major gas-phase products to be hydrogen cyanide (HCN) and nitrous oxide (N2O). The merged droplet was also probed by pulsed Raman spectroscopy which deciphered features for key functional groups of the reaction products and intermediates (-BH, -BH2, -BH3, -NCO); reaction kinetics revealed that the reaction was initiated by the interaction of the [CBH]- anion of the HIL with the oxidizer (HNO3) through proton transfer. Computations indicate the formation of a van-der-Waals complex between the [CBH]- anion and HNO3 initially, followed by proton transfer from the acid to the anion and subsequent extensive isomerization; these rearrangements were found to be essential for the formation of HCN and N2O. The exoergicity observed during the merging process provides a molar enthalpy change up to 10 kJ mol-1 to the system, which could be sufficient for a significant fraction of the reactants of about 11% to overcome the reaction barriers in the individual steps of the computationally determined minimum energy pathways.

4.
Phys Chem Chem Phys ; 24(22): 14033-14043, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35639470

RESUMO

Hydroxylammonium nitrate (HAN) is a potential propellant candidate for dual-mode propulsion systems that combine chemical and electrospray thrust capabilities for spacecraft applications. However, the electrospray dynamics of HAN is currently not well understood. Capitalizing on electrospray ionization guided-ion beam tandem mass spectrometry and collision-induced dissociation measurements, and augmented by extensive molecular dynamics simulations, this work characterized the structures and reaction dynamics of the species present in the electrosprays of HAN under different conditions, which mimic those possibly occurring in low earth orbit and outer space. While being ionic in nature, the HAN monomer, however, adopts a stable covalent structure HONH2·HNO3 in the gas phase. Spontaneous proton transfer between the HONH2 and HNO3 moieties within the HAN monomer can be induced in the presence of a NO3-, a water ligand or a second HAN monomer within 3-5 Å or a H+ within 8 Å, regardless of their collision impact parameters. These facts imply that HAN proton transfer is trigged by a charge and/or a dipole of the collision partner without the need of chemical interaction or physical contact. Moreover, the addition of NO3- to HAN leads to the formation of a stable -O3N·HONH3+·NO3- anion in negative electrosprays. In contrast, when a proton approaches the HONH2·HNO3 structure, dissociative reactions occur that lead to the H2O, NO2 and HONH2 fragments (and their cations) but not intact HAN species in positive electrosprays.


Assuntos
Prótons , Espectrometria de Massas por Ionização por Electrospray , Simulação de Dinâmica Molecular , Nitratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
5.
J Phys Chem A ; 126(3): 373-394, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35014846

RESUMO

To develop chemical kinetics models for the combustion of ionic liquid-based monopropellants, identification of the elementary steps in the thermal and catalytic decomposition of components such as 2-hydroxyethylhydrazinium nitrate (HEHN) is needed but is currently not well understood. The first decomposition step in protic ionic liquids such as HEHN is typically the proton transfer from the cation to the anion, resulting in the formation of 2-hydroxyethylhydrazine (HEH) and HNO3. In the first part of this investigation, the high-temperature thermal decomposition of HEH is probed with flash pyrolysis (<1400 K) and vacuum ultraviolet (10.45 eV) photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS). Next, the investigation into the thermal and catalytic decomposition of HEHN includes two mass spectrometric techniques: (1) tunable VUV-PI-TOFMS (7.4-15 eV) and (2) ambient ionization mass spectrometry utilizing both plasma and laser ionization techniques whereby HEHN is introduced onto a heated inert or iridium catalytic surface and the products are probed. The products can be identified by their masses, their ionization energies, and their collision-induced fragmentation patterns. Formation of product species indicates that catalytic surface recombination is an important reaction process in the decomposition mechanism of HEHN. The products and their possible elementary reaction mechanisms are discussed.

6.
J Phys Chem A ; 125(27): 5922-5932, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229436

RESUMO

Elucidating the multifaceted processes of molecular activation and subsequent reactions gives a fundamental view into the development of iridium catalysts as they apply to fuels and propellants, for example, for spacecraft thrusters. Hydroxylamine, a component of the well-known hydroxylammonium nitrate (HAN) ionic liquid, is a safer alternative and mimics the chemistry and performance standards of hydrazine. The activation of hydroxylamine by anionic iridium clusters, Irn- (n = 1-5), depicts a part of the mechanism, where two hydrogen atoms are removed, likely as H2, and Irn(NOH)- clusters remain. The significant photoelectron spectral differences between these products and the bare clusters illustrate the substantial electronic changes imposed by the hydroxylamine fragment on the iridium clusters. In combination with DFT calculations, a preliminary reaction mechanism is proposed, identifying the possible intermediate steps leading to the formation of Ir(NOH)-.

7.
J Phys Chem A ; 124(50): 10434-10446, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33264012

RESUMO

The N2H3 + NO2 reaction plays a key role during the early stages of hypergolic ignition between N2H4 and N2O4. Here for the first time, the reaction kinetics of N2H3 in excess NO2 was studied in 2.0 Torr of N2 and in the narrow temperature range 298-348 K in a pulsed photolysis flow-tube reactor coupled to a mass spectrometer. The temporal profile of the product, HONO, was determined by direct detection of the m/z +47 amu ion signal. For each chosen [NO2], the observed [HONO] trace was fitted to a biexponential kinetics expression, which yielded a value for the pseudo-first-order rate coefficient, k', for the reaction of N2H3 with NO2. The slope of the plot of k' versus [NO2] yielded a value for the observed bimolecular rate coefficient, kobs, which could be fitted to an Arrhenius expression of (2.36 ± 0.47) × 10-12 exp((520 ± 350)/T) cm3 molecule-1 s-1. The errors are 1σ and include estimated uncertainties in the NO2 concentration. The potential energy surface of N2H3 + NO2 was investigated by advanced ab initio quantum chemistry theories. It was found that the reaction occurs via a complex reaction mechanism, and all of the reaction channels have transition state energies below that of the entrance asymptote. The radical-radical addition forms the N2H3NO2 adducts, while roaming-mediated isomerization reactions yield the N2H3ONO isomers, which undergo rapid dissociation reactions to several sets of distinct products. The RRKM multiwell master equation simulations revealed that the major product channel involves the formation of trans-HONO and trans-N2H2 below 500 K and the formation of NO + NH2NHO above 500 K, which is nearly pressure independent. The pressure-dependent rate coefficients of the product channels were computed over a wide pressure-temperature range, which encompassed the experimental data.

8.
J Phys Chem A ; 124(50): 10507-10516, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33284621

RESUMO

We determine the intramolecular distortions at play in the 2-hydroxyethylhydrazinium nitrate (HEHN) ionic liquid (IL) propellant, which presents the interesting case that the HEH+ cation has multiple sites (i.e., hydroxy, primary amine, and secondary ammonium groups) available for H-bonding with the nitrate anion. These interactions are quantified by analyzing the vibrational band patterns displayed by cold cationic clusters, (HEH+)n(NO3-)n-1, n = 2-6, which are obtained using IR photodissociation of the cryogenically cooled, mass-selected ions. The strong interaction involving partial proton transfer of the acidic N-H proton in HEH+ cation to the nitrate anion is strongly enhanced in the ternary n = 2 cluster but is suppressed with increasing cluster size. The cluster spectra recover the bands displayed by the bulk liquid by n = 5, thus establishing the minimum domain required to capture this aspect of macroscopic behavior.

9.
J Phys Chem A ; 124(5): 864-874, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31914728

RESUMO

In this study, in situ infrared spectroscopy techniques and thermogravimetric analysis coupled with mass spectrometry (TGA-MS) are employed to characterize the reactivity of the ionic liquid, 1-butyl-3-methylimidazolium dicyanoborohydride (BMIM+DCBH-), in comparison to the well-characterized 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) ionic liquid. TGA measurements determined the enthalpy of vaporization (ΔHvap) to be 112.7 ± 12.3 kJ/mol at 298 K. A rapid scan Fourier transform infrared spectrometer was used to obtain vibrational information useful in tracking the appearance and disappearance of species in the hypergolic reactions of BMIM+DCBH- and BMIM+DCA- with white fuming nitric acid (WFNA) and in the thermal decomposition of these energetic ionic liquids. Attenuated total reflectance measurements recorded the infrared spectra of the reactant sample (BMIM+DCBH-) and the liquid reaction products after reacting with WFNA. Computational chemistry efforts, aided by the experimental results, were used to propose key reaction pathways leading to the hypergolic ignition of BMIM+DCBH- + WFNA. Experimental results indicate that the hypergolic reaction of BMIM+DCBH- with WFNA generates both common and unique intermediates as compared to previous BMIM+DCA- + WFNA investigations: nitrous oxide was generated during both hypergolic reactions indicating that it may play a crucial role in the hypergolic ignition process, NO2 was generated in significantly higher concentrations for BMIM+DCBH- than for BMIM+DCA-, CO2 was only generated for BMIM+DCA-, and HCN was only generated during thermal decomposition and hypergolic ignition of BMIM+DCBH-.

10.
J Phys Chem A ; 123(1): 10-14, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30543100

RESUMO

A range of ionic liquids (ILs) have been synthesized and modeled to better understand the role of the cation in the ignition of hypergolic ionic liquids. Vogelhuber et al. have shown by density functional theory methods that the addition of sodium cations to an ionic liquid promotes ignition with white fuming nitric acid (WFNA) by lowering energy barriers. To validate this prediction, solid sodium dicyanamide (Na+DCA-) was added at various weight percents to 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-). The ignition delay was measured for each mixture with WFNA. Overall, it was found that the Na+DCA- lowered the ignition delay by 11 ms at 7 wt %. The calculations done by Vogelhuber et al. appear to be consistent with this observation. The sodium cation may play a role by orienting the anion with the WFNA resulting in the favorable reaction energetics observed.

11.
J Phys Chem A ; 120(41): 8011-8023, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27657880

RESUMO

The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM+DCA-) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

12.
J Phys Chem A ; 118(47): 11133-44, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25275818

RESUMO

Quasi-classical, direct dynamics trajectories were calculated at the B3LYP/6-31G* level of theory, in an attempt to understand decomposition mechanisms of 1-ethyl-3-methylimidazolium dicyanamide (EMIM(+)DCA(-)) and 1-ethyl-2,3-dimethylimidazolium dicyanamide (EMMIM(+)DCA(-)). The trajectories showed many dissociation paths for these two ionic liquids. Using trajectory results as a guide, structures of transition states and products that might be important for decomposition of these two compounds were determined using density functional theory calculations. Rice-Ramsperger-Kassel-Marcus (RRKM) theory was then utilized to examine properties of energized ionic liquids and to determine unimolecular rates for crossing various transition states. On the basis of RRKM modeling, initial decomposition paths for energized EMIM(+)DCA(-) correspond to formation of an N-heterocyclic carbene and acid pair via transfer of the C2 proton of EMIM(+) to DCA(-), and evolution of methylimidazole and ethylimidazole via SN2 alkyl abstraction by DCA(-). Similar decomposition paths were identified for energized EMMIM(+)DCA(-), except that the reactivity of C2 of the imidazolium cation is significantly reduced upon substitution of a methyl group for a hydrogen atom at this position. The present work demonstrates that dynamics simulations, in conjunction with statistical modeling, are able to provide insight into decomposition mechanisms, kinetics, and dynamics for alkylimidazolium-based ionic liquids and to predict product branching ratios and how they vary with decomposition temperatures.

13.
J Phys Chem A ; 118(12): 2228-36, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24571276

RESUMO

Certain room-temperature ionic liquids exhibit hypergolic activity as liquid bipropellants. Understanding the chemical pathways and reaction mechanisms associated with hypergolic ignition is important for designing new fuels. It has been proposed (J. Phys. Chem. A 2008, 112, 7816) that an important ignition step for the hypergolic ionic liquid bipropellant system of dicyanamide/nitric acid is the activation and dissociation of the 1,5-dinitrobiuret anion DNB(-). For the work reported here, a quasiclassical direct dynamics simulation, at the DFT/M05-2X level of theory, was performed to model H(+) + DNB(-) association and the ensuing unimolecular decomposition of HDNB. This association step is 324 kcal/mol exothermic, and the most probable collision event is for H(+) to directly scatter off of DNB(-), without sufficient energy transfer to DNB(-) for H(+) to associate and form a highly vibrationally excited HDNB molecule. Approximately 1/3 of the trajectories do form HDNB, which decomposes by eight different reaction paths and whose unimolecular dynamics is highly nonstatistical. Some of these paths are the same as those found in a direct dynamics simulation of the high-temperature thermal decomposition of HDNB (J. Phys. Chem. A 2011, 115, 8064), for a similar total energy.

14.
J Phys Chem A ; 118(47): 11119-32, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25381899

RESUMO

Because of the unusually high heats of vaporization of room-temperature ionic liquids (RTILs), volatilization of RTILs through thermal decomposition and vaporization of the decomposition products can be significant. Upon heating of cyano-functionalized anionic RTILs in vacuum, their gaseous products were detected experimentally via tunable vacuum ultraviolet photoionization mass spectrometry performed at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Experimental evidence for di- and trialkylimidazolium cations and cyano-functionalized anionic RTILs confirms thermal decomposition occurs primarily through two pathways: deprotonation of the cation by the anion and dealkylation of the imidazolium cation by the anion. Secondary reactions include possible cyclization of the cation and C2 substitution on the imidazolium, and their proposed reaction mechanisms are introduced here. Additional evidence supporting these mechanisms was obtained using thermal gravimetric analysis-mass spectrometry, gas chromatography-mass spectrometry, and temperature-jump infrared spectroscopy. In order to predict the overall thermal stability in these ionic liquids, the ability to accurately calculate both the basicity of the anions and their nucleophilicity in the ionic liquid is critical. Both gas phase and condensed phase (generic ionic liquid (GIL) model) density functional theory calculations support the decomposition mechanisms, and the GIL model could provide a highly accurate means to determine thermal stabilities for ionic liquids in general.

15.
Chem Sci ; 15(4): 1480-1487, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38274079

RESUMO

Hypergolic ionic liquids (HIL) - ionic liquids which ignite spontaneously upon contact with an oxidizer - emerged as green space propellants. Exploiting the previously marked hypergolic [EMIM][CBH] - WFNA (1-ethyl-3-methylimidazolium cyanoborohydride - white fuming nitric acid) system as a benchmark, through the utilization of a novel chirped-pulse droplet-merging technique in an ultrasonic levitation environment and electronic structure calculations, this work deeply questions the hypergolicity of the [EMIM][CBH]-WFNA system. Molecular oxygen is critically required for the [EMIM][CBH]-WFNA system to ignite spontaneously. State-of-the-art electronic structure calculations identified the resonantly stabilized N-boryl-N-oxo-formamide [(H3B-N(O)-CHO)-; BOFA] radical anion as the key intermediate in driving the oxidation chemistry upon reaction with molecular oxygen of the ionic liquid. These findings challenge conventional wisdom of 'well-established' test protocols as indicators of the hypergolicity of ionic liquids thus necessitating truly oxygen-free experimental conditions to define the ignition delay upon mixing of the ionic liquid and the oxidizer and hence designating an ionic liquid as truly hypergolic at the molecular level.

16.
J Phys Chem A ; 117(37): 9047-56, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23964999

RESUMO

The ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was vaporized at 420 K, and the ion-pair constituents were entrained in a beam of liquid He nanodroplets and cooled to 0.4 K. The vapor pressure was optimized such that each He droplet picked up a single ion-pair from the gas phase. Infrared spectroscopy in the CH stretch region reveals bands that are assigned to intact ion-pairs on the basis of comparisons to ab initio harmonic frequency computations of 23 low energy isomers. The He droplet spectrum is consistent with a weighted sum of the computed harmonic spectra, in which the weights are determined from ab initio computations of the relative free energies at 420 K. Anharmonic resonance polyads in the CH stretch region are treated explicitly, which improves the agreement between the experiment and computed spectra for ion-pairs. For isomers having a strong cation···anion hydrogen bonding interaction, the imidazolium C(2)-H stretch fundamental is shifted to lower energy and into resonance with the overtones and combination bands of the imidazolium ring stretching modes, resulting in a spectral complexity in the CH stretch region that is fully resolved in the He droplet spectrum. The assignment of the infrared spectrum to ion-pairs is confirmed through polarization spectroscopy measurements that reveal the permanent electric dipole moment of the He-solvated species to be 11 ± 2 D. The computed permanent electric dipole moments for the low energy isomers of the [emim(+)][Tf2N(-)] ion-pairs fall in the range 9-13 D, whereas the computed dipole moments of decomposition products of the ionic liquid are less than 4.3 D.

17.
J Phys Chem A ; 116(24): 5867-76, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22098258

RESUMO

In order to better understand the volatilization process for ionic liquids, the vapor evolved from heating the ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIM(+)Br(-)) was analyzed via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry (VUV-PI-TOFMS) and thermogravimetric analysis mass spectrometry (TGA-MS). For this ionic liquid, the experimental results indicate that vaporization takes place via the evolution of alkyl bromides and alkylimidazoles, presumably through alkyl abstraction via an S(N)2 type mechanism, and that vaporization of intact ion pairs or the formation of carbenes is negligible. Activation enthalpies for the formation of the methyl and ethyl bromides were evaluated experimentally, ΔH(‡)(CH(3)Br) = 116.1 ± 6.6 kJ/mol and ΔH(‡)(CH(3)CH(2)Br) = 122.9 ± 7.2 kJ/mol, and the results are found to be in agreement with calculated values for the S(N)2 reactions. Comparisons of product photoionization efficiency (PIE) curves with literature data are in good agreement, and ab initio thermodynamics calculations are presented as further evidence for the proposed thermal decomposition mechanism. Estimates for the enthalpy of vaporization of EMIM(+)Br(-) and, by comparison, 1-butyl-3-methylimidazolium bromide (BMIM(+)Br(-)) from molecular dynamics calculations and their gas phase enthalpies of formation obtained by G4 calculations yield estimates for the ionic liquids' enthalpies of formation in the liquid phase: ΔH(vap)(298 K) (EMIM(+)Br(-)) = 168 ± 20 kJ/mol, ΔH(f, gas)(298 K) (EMIM(+)Br(-)) = 38.4 ± 10 kJ/mol, ΔH(f, liq)(298 K) (EMIM(+)Br(-)) = -130 ± 22 kJ/mol, ΔH(f, gas)(298 K) (BMIM(+)Br(-)) = -5.6 ± 10 kJ/mol, and ΔH(f, liq)(298 K) (BMIM(+)Br(-)) = -180 ± 20 kJ/mol.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Termodinâmica , Simulação de Dinâmica Molecular
18.
J Phys Chem A ; 115(28): 8064-72, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21648953

RESUMO

A large set of quasi-classical, direct dynamics trajectory simulations were performed for decomposition of 1,5-dinitrobiuret (DNB) over a temperature range from 4000 to 6000 K, aimed at providing insight into DNB decomposition mechanisms. The trajectories revealed various decomposition paths and reproduced the products (including HNCO, N(2)O, NO(2), NO, and water) observed in DNB pyrolysis experiments. Using trajectory results as a guide, structures of intermediate complexes and transition states that might be important for decomposition were determined using density functional theory calculations. Rice-Ramsperger-Kassel-Marcus (RRKM) theory was then utilized to examine behaviors of the energized reactant and intermediates and to determine unimolecular rates for crossing various transition states. According to RRKM predictions, the dominant initial decomposition path of energized DNB corresponds to elimination of HNNO(2)H via a concerted mechanism where the molecular decomposition is accompanied with intramolecular H-atom transfer from the central nitrogen to the terminal nitro oxygen. Other important paths correspond to elimination of NO(2) and H(2)NNO(2). NO(2) elimination is a simple N-N bond scission process. Formation and elimination of nitramide is, however, dynamically complicated, requiring twisting a -NHNO(2) group out of the molecular plane, followed by an intramolecular reaction to form nitramide before its elimination. These two paths become significant at temperatures above 1500 K, accounting for >17% of DNB decomposition at 2000 K. This work demonstrates that quasi-classical trajectory simulations, in conjunction with electronic structure and RRKM calculations, are able to extract mechanisms, kinetics, dynamics and product branching ratios for the decomposition of complex energetic molecules and to predict how they vary with decomposition temperature.

19.
J Phys Chem A ; 115(18): 4630-5, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21506546

RESUMO

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim(+)][Tf(2)N(-)]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim(+)][Dca(-)]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim(+) and Bmim(+), presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim(+)][Tf(2)N(-)] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (∼0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally "cooler" source of isolated intact ion pairs in the gas phase compared to effusive sources.


Assuntos
Líquidos Iônicos/química , Temperatura , Aerossóis/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Raios Ultravioleta
20.
J Phys Chem A ; 114(2): 879-83, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19957958

RESUMO

Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion pairs from [emim][Tf(2)N], [emim][Pf(2)N], and [dmpim][Tf(2)N] ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts toward higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, whereas shifts toward lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving the dissociation of the ion pair and the production of intact cations as the positively charged products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA