Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Environ Sci Technol ; 58(25): 11105-11117, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866390

RESUMO

Volatile chemical products (VCPs) are increasingly recognized as significant sources of volatile organic compounds (VOCs) in urban atmospheres, potentially serving as key precursors for secondary organic aerosol (SOA) formation. This study investigates the formation and physicochemical transformations of VCP-derived SOA, produced through ozonolysis of VOCs evaporated from a representative room deodorant air freshener, focusing on the effects of aerosol evaporation on its molecular composition, light absorption properties, and reactive oxygen species (ROS) generation. Following aerosol evaporation, solutes become concentrated, accelerating reactions within the aerosol matrix that lead to a 42% reduction in peroxide content and noticeable browning of the SOA. This process occurs most effectively at moderate relative humidity (∼40%), reaching a maximum solute concentration before aerosol solidification. Molecular characterization reveals that evaporating VCP-derived SOA produces highly conjugated nitrogen-containing products from interactions between existing or transformed carbonyl compounds and reduced nitrogen species, likely acting as chromophores responsible for the observed brownish coloration. Additionally, the reactivity of VCP-derived SOA was elucidated through heterogeneous oxidation of sulfur dioxide (SO2), which revealed enhanced photosensitized sulfate production upon drying. Direct measurements of ROS, including singlet oxygen (1O2), superoxide (O2•-), and hydroxyl radicals (•OH), showed higher abundances in dried versus undried SOA samples under light exposure. Our findings underscore that drying significantly alters the physicochemical properties of VCP-derived SOA, impacting their roles in atmospheric chemistry and radiative balance.


Assuntos
Aerossóis , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Oxirredução , Poluentes Atmosféricos/química , Espécies Reativas de Oxigênio/química , Atmosfera/química
2.
Environ Sci Technol ; 58(18): 7924-7936, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38652049

RESUMO

Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.


Assuntos
Aerossóis , Oxirredução , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Luz
3.
Environ Sci Technol ; 58(19): 8380-8392, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691504

RESUMO

A comprehensive understanding of the full volatility spectrum of organic oxidation products from the benzene series precursors is important to quantify the air quality and climate effects of secondary organic aerosol (SOA) and new particle formation (NPF). However, current models fail to capture the full volatility spectrum due to the absence of important reaction pathways. Here, we develop a novel unified model framework, the integrated two-dimensional volatility basis set (I2D-VBS), to simulate the full volatility spectrum of products from benzene series precursors by simultaneously representing first-generational oxidation, multigenerational aging, autoxidation, dimerization, nitrate formation, etc. The model successfully reproduces the volatility and O/C distributions of oxygenated organic molecules (OOMs) as well as the concentrations and the O/C of SOA over wide-ranging experimental conditions. In typical urban environments, autoxidation and multigenerational oxidation are the two main pathways for the formation of OOMs and SOA with similar contributions, but autoxidation contributes more to low-volatility products. NOx can reduce about two-thirds of OOMs and SOA, and most of the extremely low-volatility products compared to clean conditions, by suppressing dimerization and autoxidation. The I2D-VBS facilitates a holistic understanding of full volatility product formation, which helps fill the large gap in the predictions of organic NPF, particle growth, and SOA formation.


Assuntos
Benzeno , Benzeno/química , Compostos Orgânicos/química , Oxirredução , Aerossóis , Volatilização , Poluentes Atmosféricos , Modelos Teóricos
4.
J Proteome Res ; 22(12): 3692-3702, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910637

RESUMO

Spectral libraries are useful resources in proteomic data analysis. Recent advances in deep learning allow tandem mass spectra of peptides to be predicted from their amino acid sequences. This enables predicted spectral libraries to be compiled, and searching against such libraries has been shown to improve the sensitivity in peptide identification over conventional sequence database searching. However, current prediction models lack support for longer peptides, and thus far, predicted library searching has only been demonstrated for backbone ion-only spectrum prediction methods. Here, we propose a deep learning-based full-spectrum prediction method to generate predicted spectral libraries for peptide identification. We demonstrated the superiority of using full-spectrum libraries over backbone ion-only prediction approaches in spectral library searching. Furthermore, merging spectra from different prediction models, as a form of ensemble learning, can produce improved spectral libraries, in terms of identification sensitivity. We also show that a hybrid library combining predicted and experimental spectra can lead to 20% more confident identifications over experimental library searching or sequence database searching.


Assuntos
Aprendizado Profundo , Biblioteca de Peptídeos , Proteômica/métodos , Software , Bases de Dados de Proteínas , Peptídeos/química
5.
Environ Sci Technol ; 57(28): 10295-10307, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37418292

RESUMO

Elevated particulate sulfate concentrations have been frequently observed in coastal areas when air masses are influenced by continental emissions, especially combustion sources like biomass burning. We studied the SO2 uptake by laboratory-generated droplets containing incense smoke extracts and sodium chloride (IS-NaCl) under irradiation and found enhanced sulfate production over pure NaCl droplets, attributable to photosensitization induced by constituents in IS. Low relative humidity and high light intensity facilitated sulfate formation and increased the SO2 uptake coefficient by IS-NaCl particles. Aging of the IS particles further enhanced sulfate production, attributable to the enhanced secondary oxidant production promoted by increased proportions of nitrogen-containing CHN and oxygen- and nitrogen-containing CHON species under light and air. Experiments using model compounds of syringaldehyde, pyrazine, and 4-nitroguaiacol verified the enhancements of CHN and CHON species in sulfate formation. This work provides experimental evidence of enhanced sulfate production in laboratory-generated IS-NaCl droplets via enhanced secondary oxidant production triggered by photosensitization in multiphase oxidation processes under light and air. Our results can shed light on the possible interactions between sea salt and biomass burning aerosols in enhancing sulfate production.


Assuntos
Poluentes Atmosféricos , Cloreto de Sódio , Sulfatos , Nitrogênio , Aerossóis/análise , Oxidantes , Poluentes Atmosféricos/análise , Material Particulado/análise
6.
Small ; 18(40): e2203212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058651

RESUMO

Semiconductor chemiresistive gas sensors play critical roles in a smart and sustainable city where a safe and healthy environment is the foundation. However, the poor limits of detection and selectivity are the two bottleneck issues limiting their broad applications. Herein, a unique sensor design with a 3D tin oxide (SnO2 ) nanotube array as the sensing layer and platinum (Pt) nanocluster decoration as the catalytic layer, is demonstrated. The Pt/SnO2 sensor significantly enhances the sensitivity and selectivity of NO2 detection by strengthening the adsorption energy and lowering the activation energy toward NO2 . It not only leads to ultrahigh sensitivity to NO2 with a record limit of detection of 107 parts per trillion, but also enables selective NO2 sensing while suppressing the responses to interfering gases. Furthermore, a wireless sensor system integrated with sensors, a microcontroller, and a Bluetooth unit is developed for the practical indoor and on-road NO2 detection applications. The rational design of the sensors and their successful demonstration pave the way for future real-time gas monitoring in smart home and smart city applications.


Assuntos
Nanotubos , Platina , Gases , Dióxido de Nitrogênio , Óxidos , Temperatura
7.
Environ Sci Technol ; 56(3): 1605-1614, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023733

RESUMO

Glyoxal is an important precursor of aqueous secondary organic aerosol (aqSOA). Its photooxidation to form organic acids and oligomers and reactions with reduced nitrogen compounds to form brown carbon (BrC) have been extensively investigated separately, although these two types of reactions can occur simultaneously during the daytime. Here, we examine the reactions of glyoxal during photooxidation and BrC formation in premixed NH4NO3 + Glyoxal droplets. We find that nitrate photolysis and photosensitization can enhance the decay rates of glyoxal by a factor of ∼5 and ∼6 compared to those under dark, respectively. A significantly enhanced glyoxal decay rate by a factor of ∼12 was observed in the presence of both nitrate photolysis and photosensitization. Furthermore, a new organic phase was formed in irradiated NH4NO3 + Glyoxal droplets, which had no noticeable degradation under prolonged photooxidation. It was attributed to the imidazole oxidation mediated by nitrate photolysis and/or photosensitization. The persistent organic phase suggests the potential to contribute to SOA formation in ambient fine particles. This study highlights that glyoxal photooxidation mediated by nitrate photolysis and photosensitization can significantly enhance the atmospheric sink of glyoxal, which may partially narrow the gap between model predictions and field measurements of ambient glyoxal concentrations.

8.
Environ Sci Technol ; 56(9): 5430-5439, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435670

RESUMO

Alkaline gases such as NH3 and amines play important roles in neutralizing acidic particles in the atmosphere. Here, two common gaseous amines (dimethylamine (DMA) and trimethylamine (TMA)), NH3, and their corresponding ions in PM2.5 were measured semicontinuously using an ambient ion monitor-ion chromatography (AIM-IC) system in marine air during a round-trip cruise of approximately 4000 km along the coastline of eastern China. The concentrations of particulate DMA, detected as DMAH+, varied from <4 to 100 ng m-3 and generally decreased with increasing atmospheric NH3 concentrations. Combining observations with thermodynamic equilibrium calculations using the extended aerosol inorganics model (E-AIM) indicated that the competitive uptake of DMA against NH3 on acidic aerosols generally followed thermodynamic equilibria and appeared to be sensitive to DMA/NH3 molar ratios, resulting in molar ratios of DMAH+ to DMA + DMAH+ of 0.31 ± 0.16 (average ± standard deviation) at atmospheric NH3 concentrations over 1.8 µg m-3 (with a corresponding DMA/NH3 ratio of (1.8 ± 1.0) × 10-3), 0.80 ± 0.15 at atmospheric NH3 concentrations below 0.3 µg m-3 (with a corresponding DMA/NH3 ratio of (1.3 ± 0.6) × 10-2), and 0.56 ± 0.19 in the remaining cases. Particulate TMA concentrations, detected as TMAH+, ranged from <2 to 21 ng m-3 and decreased with increasing concentrations of atmospheric NH3. However, TMAH+ was depleted concurrently with the formation of NH4NO3 under low concentrations of atmospheric NH3, contradictory to the calculated increase in the equilibrated concentration of TMAH+ by the E-AIM.


Assuntos
Poluentes Atmosféricos , Amônia , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Dimetilaminas/análise , Monitoramento Ambiental , Gases/química , Metilaminas/análise , Material Particulado/análise
9.
J Proteome Res ; 20(12): 5359-5367, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734728

RESUMO

Modern shotgun proteomics experiments generate gigabytes of spectra every hour, only a fraction of which were utilized to form biological conclusions. Instead of being stored as flat files in public data repositories, this large amount of data can be better organized to facilitate data reuse. Clustering these spectra by similarity can be helpful in building high-quality spectral libraries, correcting identification errors, and highlighting frequently observed but unidentified spectra. However, large-scale clustering is time-consuming. Here, we present ClusterSheep, a method utilizing Graphics Processing Units (GPUs) to accelerate the process. Unlike previously proposed algorithms for this purpose, our method performs true pairwise comparison of all spectra within a precursor mass-to-charge ratio tolerance, thereby preserving the full cluster structures. ClusterSheep was benchmarked against previously reported clustering tools, MS-Cluster, MaRaCluster, and msCRUSH. The software tool also functions as an interactive visualization tool with a persistent state, enabling the user to explore the resulting clusters visually and retrieve the clustering results as desired.


Assuntos
Proteômica , Software , Algoritmos , Análise por Conglomerados , Bases de Dados de Proteínas , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
10.
Small ; 17(50): e2103052, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719844

RESUMO

Manganese dioxide (MnO2 ), with naturally abundant crystal phases, is one of the most active candidates for toluene degradation. However, it remains ambiguous and controversial of the phase-activity relationship and the origin of the catalytic activity of these multiphase MnO2 . In this study, six types of MnO2 with crystal phases corresponding to α-, ß-, γ-, ε-, λ-, and δ-MnO2 are prepared, and their catalytic activity toward ozone-assisted catalytic oxidation of toluene at room temperature are studied, which follow the order of δ-MnO2  > α-MnO2  > ε-MnO2  > γ-MnO2  > λ-MnO2  > ß-MnO2 . Further investigation of the specific oxygen species with the toluene oxidation activity indicates that high catalytic activity of MnO2 is originated from the rich oxygen vacancy and the strong mobility of oxygen species. This work illustrates the important role of crystal phase in determining the oxygen vacancies' density and the mobility of oxygen species, thus influencing the catalytic activity of MnO2 catalysts, which sheds light on strategies of rational design and synthesis of multiphase MnO2 catalysts for volatile organic pollutants' (VOCs) degradation.


Assuntos
Nanoestruturas , Ozônio , Catálise , Compostos de Manganês , Óxidos , Tolueno
11.
Faraday Discuss ; 226: 617-628, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650602

RESUMO

Megacities are metropolitan areas with populations over 10 million, and many of them are facing significant global environmental challenges such as air pollution. Intense economic and human activities in megacities result in air pollution emissions, inducing high levels of air pollutants in the atmosphere that harm human health, cause regional haze and acid deposition, damage crops, influence regional air quality, and contribute to climate change. Since the Great London Smog and the first recognized episode of Los Angeles photochemical smog seventy years ago, substantial progress has been achieved in improving the scientific understanding of air pollution and in developing emissions reduction technologies and control measures. However, much remains to be understood about the complex processes of atmospheric transport and reaction mechanisms; the formation and evolution of secondary particles, especially those containing organic species; and the influence of emerging emissions sources and changing climate on air quality and health. Molina (DOI: ) has provided an excellent overview of the sources of emissions in megacities, atmospheric physicochemical processes, air quality trends and management, and the impacts on health and climate for the introductory lecture of this Faraday Discussion.

12.
Environ Sci Technol ; 55(23): 15715-15723, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812628

RESUMO

Gaseous nitrous acid (HONO) has the potential to greatly contribute to the atmospheric oxidation capacity. Increased attention has been paid to in-particle nitrite or nitrous acid, N(III), as one of the HONO sources. However, sources and formation mechanisms of N(III) remain uncertain. Here, we study a much less examined reaction of Fe(II) and nitrate as a source of N(III). The N(III) production was indirectly probed by its multiphase reaction with SO2 for sulfate production. Particles containing nitrate and Fe(III) were irradiated for generating Fe(II). Sulfate production was enhanced by the presence of UV and organic compounds likely because of the enhanced redox cycle between Fe(II) and Fe(III). Sulfate production rate increases with the concentration of iron-organic complexes in nitrate particles. Similarly, higher concentrations of iron-organic complexes yield higher nitrate decay rates. The estimated production rates of N(III) under simulated conditions in our study vary from 0.1 to 3.0 µg m-3 of air h-1. These values are comparable to HONO production rates of 0.2-1.6 ppbv h-1, which fall in the values reported in laboratory and field studies. The present study highlights a synergistic effect of the coexistence of iron-organic complexes and nitrate under irradiation as a source of N(III).


Assuntos
Nitritos , Ácido Nitroso , Compostos Ferrosos , Ferro , Nitratos , Fotólise
13.
Environ Sci Technol ; 55(9): 5711-5720, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861585

RESUMO

Particulate nitrate photolysis can produce oxidants (i.e., OH, NO2, and NO2-/HNO2) in aqueous droplets and may play a potential role in increased atmospheric oxidative capacity. Our earlier works have reported on the SO2 oxidation promoted by nitrate photolysis to produce sulfate. Here, we used glyoxal as a model precursor to examine the role of particulate nitrate photolysis in the formation of secondary organic aerosol (SOA) from particle-phase oxidation of glyoxal by OH radicals. Particles containing sodium nitrate and glyoxal were irradiated at 300 nm. Interestingly, typical oxidation products of oxalic acid, glyoxylic acid, and higher-molecular-weight products reported in the literature were not found in the photooxidation process of glyoxal during nitrate photolysis in the particle phase. Instead, formic acid/formate production was found as the main oxidation product. At glyoxal concentration higher than 3 M, we found that the formic acid/formate production rate increases significantly with increasing glyoxal concentration. Such results suggest that oxidation of glyoxal at high concentrations by OH radicals produced from nitrate photolysis in aqueous particles may not contribute significantly to SOA formation since formic acid is a volatile species. Furthermore, recent predictions of formic acid/formate concentration from the most advanced chemical models are lower than ambient observations at both the ground level and high altitude. The present study reveals a new insight into the production of formic acid/formate as well as a sink of glyoxal in the atmosphere, which may partially narrow the gap between model predictions and field measurements in both species.


Assuntos
Glioxal , Nitratos , Aerossóis , Formiatos , Fotólise
14.
Environ Sci Technol ; 55(21): 14515-14525, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652131

RESUMO

Complying with stricter emissions standards, a new generation of heavy-duty trucks (HDTs) has gradually increased its market share and now accounts for a large percentage of on-road mileage. The potential to improve air quality depends on an actual reduction in both emissions and subsequent formation of secondary pollutants. In this study, the emissions in real-world traffic from Euro VI-compliant HDTs were compared to those from older classes, represented by Euro V, using high-resolution time-of-flight chemical ionization mass spectrometry. Gas-phase primary emissions of several hundred species were observed for 70 HDTs. Furthermore, the particle phase and secondary pollutant formation (gas and particle phase) were evaluated for a number of HDTs. The reduction in primary emission factors (EFs) was evident (∼90%) and in line with a reduction of 28-97% for the typical regulated pollutants. Secondary production of most gas- and particle-phase compounds, for example, nitric acid, organic acids, and carbonyls, after photochemical aging in an oxidation flow reactor exceeded the primary emissions (EFAged/EFFresh ratio ≥2). Byproducts from urea-selective catalytic reduction systems had both primary and secondary sources. A non-negative matrix factorization analysis highlighted the issue of vehicle maintenance as a remaining concern. However, the adoption of Euro VI has a significant positive effect on emissions in real-world traffic and should be considered in, for example, urban air quality assessments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Espectrometria de Massas , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise
15.
Environ Sci Technol ; 55(23): 15694-15704, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784716

RESUMO

A prominent source of hydroxyl radicals (•OH), nitrous acid (HONO) plays a key role in tropospheric chemistry. Apart from direct emission, HONO (or its conjugate base nitrite, NO2-) can be formed secondarily in the atmosphere. Yet, how secondary HONO forms requires elucidation, especially for heterogeneous processes involving numerous organic compounds in atmospheric aerosols. We investigated nitrite production from aqueous photolysis of nitrate for a range of conditions (pH, organic compound, nitrate concentration, and cation). Upon adding small oxygenates such as ethanol, n-butanol, or formate as •OH scavengers, the average intrinsic quantum yield of nitrite [Φ(NO2-)] was 0.75 ± 0.15%. With near-UV-light-absorbing vanillic acid (VA), however, the effective Φ(NO2-) was strongly pH-dependent, reaching 8.0 ± 2.1% at a pH of 8 and 1.5 ± 0.39% at a more atmospherically relevant pH of 5. Our results suggest that brown carbon (BrC) may greatly enhance the nitrite production from the aqueous nitrate photolysis through photosensitizing reactions, where the triplet excited state of BrC may generate solvated electrons, which reduce nitrate to NO2 for further conversion to nitrite. This photosensitization process by BrC chromophores during nitrate photolysis under mildly acidic conditions may partly explain the missing HONO in urban environments.


Assuntos
Nitratos , Nitritos , Ácido Nitroso , Fotólise , Ácido Vanílico
16.
J Phys Chem A ; 125(17): 3739-3747, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899478

RESUMO

Atmospheric particles can be viscous. The limitation in diffusion impedes the mass transfer of oxidants from the gas phase to the particle phase and hinders multiphase oxidation processes. On the other hand, nitrate photolysis has been found to be effective in producing oxidants such as OH radicals within the particles. Whether nitrate photolysis can effectively proceed in viscous particles and how it may affect the physicochemical properties of the particle have not been much explored. In this study, we investigated particulate nitrate photolysis in mixed sucrose-nitrate-sulfate particles as surrogates of atmospheric viscous particles containing organic and inorganic components as a function of relative humidity (RH) and the molar fraction of sucrose to the total solute (FSU) with an in situ micro-Raman system. Sucrose suppressed nitrate crystallization, and high photolysis rate constants (∼10-5 s-1) were found, irrespective of the RH. For FSU = 0.5 and 0.33 particles under irradiation at 30% RH, we observed morphological changes from droplets to the formation of inclusions and then likely "hollow" semisolid particles, which did not show Raman signal at central locations. Together with the phase states of inorganics indicated by the full width at half-maxima (FWHM), images with bulged surfaces, and size increase of the particles in optical microscopic imaging, we inferred that the hindered diffusion of gaseous products (i.e., NOx, NOy) from nitrate photolysis is a likely reason for the morphological changes. Atmospheric implications of these results are also presented.

17.
Emerg Infect Dis ; 26(1): 173-176, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855544

RESUMO

We examined nasal swabs and serum samples acquired from dromedary camels in Nigeria and Ethiopia during 2015-2017 for evidence of influenza virus infection. We detected antibodies against influenza A(H1N1) and A(H3N2) viruses and isolated an influenza A(H1N1)pdm09-like virus from a camel in Nigeria. Influenza surveillance in dromedary camels is needed.


Assuntos
Camelus/virologia , Vírus da Influenza A , Infecções por Orthomyxoviridae/veterinária , Animais , Etiópia/epidemiologia , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Nigéria/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia
18.
Environ Sci Technol ; 54(16): 9862-9871, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32668147

RESUMO

Photolysis of iron chlorides is a well-known photolytic source of Cl• in environmental waters. However, the role of particulate chlorine radicals (Cl• and Cl2•-) in their multiphase oxidative potential has been much less explored. Herein, we examine the effect of Cl•/Cl2•- produced from photolysis of particulate iron chlorides on atmospheric multiphase oxidation. As a model system, experiments on multiphase oxidation of SO2 by Cl•/Cl2•- were performed. Fast sulfate production from SO2 oxidation was observed with reactive uptake coefficients of ∼10-5, comparable to the values necessary for explaining the observations in the haze events in China. The experimental and modeling results found a good positive correlation between the uptake coefficient, γSO2, and the Cl• production rate, d[Cl•]/dt, as γSO2 = 5.3 × 10-6 × log(d[Cl•]/dt) + 4.9 × 10-5. When commonly found particulate dicarboxylic acids (oxalic acid or malonic acid) were added, sulfate production was delayed due to the competition of Fe3+ between chloride and the dicarboxylic acid for its complexation at the initial stage. After the delay, comparable sulfate production was observed. The present study highlights the importance of photochemistry of particulate iron chlorides in multiphase oxidation processes in the atmosphere.


Assuntos
Cloretos , Cloro , China , Ferro , Oxirredução , Sulfatos
19.
Environ Sci Technol ; 54(7): 3831-3839, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126769

RESUMO

Heterogeneous oxidation of SO2 is an effective production pathway of sulfate in the atmosphere. We recently reported a novel pathway for the heterogeneous oxidation of SO2 by in-particle oxidants (OH, NO2, and NO2-/HNO2) produced from particulate nitrate photolysis (Environ. Sci. Technol. 2019, 53, 8757-8766). Particulate nitrate is often found to coexist with chloride and other halide ions, especially in aged sea-salt aerosols and combustion aerosols. Reactive uptake experiments of SO2 with UV-irradiated nitrate particles showed that sulfate production rates were enhanced by a factor of 1.4, 1.3, and 2.0 in the presence of Cl-, Br-, and I-, respectively, compared to those in the absence of halide ions. The larger sulfate production was attributed to enhanced nitrate photolysis promoted by the increased incomplete solvation of nitrate at the air-particle interface due to the presence of surface-active halide ions. Modeling results based on the experimental data showed that the nitrate photolysis rate constants increased by a factor of 2.0, 1.7, and 3.7 in the presence of Cl-, Br-, and I-, respectively. A linear relation was found between the nitrate photolysis rate constant, jNO3-, and the initial molar ratio of Cl- to NO3-, [Cl-]0/[NO3-]0, as jNO3- = 9.7 × 10-5[Cl-]0/[NO3-]0 + 1.9 × 10-5 at [Cl-]0/[NO3-]0 below 0.2. The present study demonstrates that the presence of halide ions enhances sulfate production produced during particulate nitrate photolysis and provides insights into the enhanced formation of in-particle oxidants that may increase atmospheric oxidative capacity.


Assuntos
Nitratos , Sulfatos , Atmosfera , Óxidos de Nitrogênio , Fotólise
20.
Environ Sci Technol ; 54(12): 7097-7106, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32428397

RESUMO

The relative humidity (RH) history that manifests the cycling of dehydration (water evaporation) and hydration (water uptake) may affect particle-phase reactions, products from which have strong influences on the physical properties and thus climatic effects of atmospheric particles. Using single-trapped particles, we show herein hygroscopic growths of mixed particles with reactive species undergoing three types of RH cycles, simulating different degrees of particle-phase reactions in the atmosphere. The reactive species are the widely known α-dicarbonyl glyoxal (GLY), and five reduced nitrogenous species, ammonium sulfate (AS), glycine (GC), l-alanine (AL), dimethylamine (DMA), and diethylamine (DEA). The results showed that the mixed particles after reactions generally had altered efflorescence relative humidity (ERH) and deliquescence relative humidity (DRH) values and reduced hygroscopic growths at moderately high RH (>80%) conditions. For example, with an additional slow drying step, the mean mass growth factors at 90% RH during dehydration dropped from 2.56 to 2.02 for GC/GLY mixed particles and from 2.45 to 1.23 for AL/GLY mixed particles. The reduced hygroscopicity with more RH cycling will thus lead to less efficient light scattering of the mixed particles, thereby resulting in less cooling and exacerbating direct heating due to light absorption by the products formed.


Assuntos
Glioxal , Nitrogênio , Aerossóis , Umidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA