Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Nucleic Acids Res ; 51(8): 3855-3868, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36938872

RESUMO

Meiotic recombinases RAD51 and DMC1 mediate strand exchange in the repair of DNA double-strand breaks (DSBs) by homologous recombination. This is a landmark event of meiosis that ensures genetic diversity in sexually reproducing organisms. However, the regulatory mechanism of DMC1/RAD51-ssDNA nucleoprotein filaments during homologous recombination in mammals has remained largely elusive. Here, we show that SPIDR (scaffold protein involved in DNA repair) regulates the assembly or stability of RAD51/DMC1 on ssDNA. Knockout of Spidr in male mice causes complete meiotic arrest, accompanied by defects in synapsis and crossover formation, which leads to male infertility. In females, loss of Spidr leads to subfertility; some Spidr-/- oocytes are able to complete meiosis. Notably, fertility is rescued partially by ablation of the DNA damage checkpoint kinase CHK2 in Spidr-/- females but not in males. Thus, our study identifies SPIDR as an essential meiotic recombination factor in homologous recombination in mammals.


Assuntos
Proteínas de Ciclo Celular , Rad51 Recombinase , Animais , Masculino , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico/genética , Reparo do DNA , Recombinação Homóloga/genética , Mamíferos/metabolismo , Meiose/genética , Camundongos Knockout , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
2.
Nucleic Acids Res ; 51(21): 11652-11667, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889087

RESUMO

Fully grown oocytes remain transcriptionally quiescent, yet many maternal mRNAs are synthesized and retained in growing oocytes. We now know that maternal mRNAs are stored in a structure called the mitochondria-associated ribonucleoprotein domain (MARDO). However, the components and functions of MARDO remain elusive. Here, we found that LSM14B knockout prevents the proper storage and timely clearance of mRNAs (including Cyclin B1, Btg4 and other mRNAs that are translationally activated during meiotic maturation), specifically by disrupting MARDO assembly during oocyte growth and meiotic maturation. With decreased levels of storage and clearance, the LSM14B knockout oocytes failed to enter meiosis II, ultimately resulting in female infertility. Our results demonstrate the function of LSM14B in MARDO assembly, and couple the MARDO with mRNA clearance and oocyte meiotic maturation.


Assuntos
Oogênese , RNA Mensageiro Estocado , Feminino , Humanos , Meiose/genética , Oócitos/fisiologia , Oogênese/genética , RNA Mensageiro/genética , RNA Mensageiro Estocado/genética , Camundongos Endogâmicos C57BL , Masculino , Animais , Camundongos
3.
BMC Genomics ; 25(1): 464, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741085

RESUMO

Gonad development includes sex determination and divergent maturation of the testes and ovaries. Recent advances in measuring gene expression in single cells are providing new insights into this complex process. However, the underlying epigenetic regulatory mechanisms remain unclear. Here, we profiled chromatin accessibility in mouse gonadal cells of both sexes from embryonic day 11.5 to 14.5 using single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq). Our results showed that individual cell types can be inferred by the chromatin landscape, and that cells can be temporally ordered along developmental trajectories. Integrative analysis of transcriptomic and chromatin-accessibility maps identified multiple putative regulatory elements proximal to key gonadal genes Nr5a1, Sox9 and Wt1. We also uncover cell type-specific regulatory factors underlying cell type specification. Overall, our results provide a better understanding of the epigenetic landscape associated with the progressive restriction of cell fates in the gonad.


Assuntos
Linhagem da Célula , Cromatina , Gônadas , Fatores de Transcrição SOX9 , Análise de Célula Única , Animais , Cromatina/metabolismo , Cromatina/genética , Camundongos , Linhagem da Célula/genética , Feminino , Masculino , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Gônadas/metabolismo , Gônadas/citologia , Gônadas/embriologia , Fator Esteroidogênico 1/genética , Fator Esteroidogênico 1/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Testículo/metabolismo , Testículo/citologia , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Ovário/metabolismo , Ovário/citologia
4.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34169324

RESUMO

The superior performance of machine-learning scoring functions for docking has caused a series of debates on whether it is due to learning knowledge from training data that are similar in some sense to the test data. With a systematically revised methodology and a blind benchmark realistically mimicking the process of prospective prediction of binding affinity, we have evaluated three broadly used classical scoring functions and five machine-learning counterparts calibrated with both random forest and extreme gradient boosting using both solo and hybrid features, showing for the first time that machine-learning scoring functions trained exclusively on a proportion of as low as 8% complexes dissimilar to the test set already outperform classical scoring functions, a percentage that is far lower than what has been recently reported on all the three CASF benchmarks. The performance of machine-learning scoring functions is underestimated due to the absence of similar samples in some artificially created training sets that discard the full spectrum of complexes to be found in a prospective environment. Given the inevitability of any degree of similarity contained in a large dataset, the criteria for scoring function selection depend on which one can make the best use of all available materials. Software code and data are provided at https://github.com/cusdulab/MLSF for interested readers to rapidly rebuild the scoring functions and reproduce our results, even to make extended analyses on their own benchmarks.


Assuntos
Benchmarking/métodos , Aprendizado de Máquina , Modelos Estatísticos , Algoritmos , Benchmarking/normas , Bases de Dados Factuais , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Análise de Regressão , Reprodutibilidade dos Testes , Fluxo de Trabalho
5.
Int J Med Sci ; 20(8): 1009-1023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484808

RESUMO

Ischemic stroke (IS) is the majority of strokes which remain the second leading cause of deaths in the last two decades. Circulating microRNAs (miRNAs) have been suggested as potential diagnostic and therapeutic tools for IS by previous studies analyzing their differential expression. However, inconclusive and controversial conclusions of these results have to be addressed. In this study, comprehensive analysis and real-world validation were performed to assess the associations between circulating miRNAs and IS. 29 studies with 112 miRNAs were extracted after manual selection and filtering, 12 differentially expressed miRNAs were obtained from our results of meta-analysis. These miRNAs were evaluated in 20 IS patients, compared to 20 healthy subjects. 4 miRNAs (hsa-let-7e-5p, hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-185-5p) exhibited the significant expression level in IS patient plasma samples. Pathway and biological process enrichment analysis for the target genes of the 4 validated miRNAs identified cellular senescence and neuroinflammation as key post-IS response pathways. The results of our analyses closely correlated with the pathogenesis and implicated pathways observed in IS subjects suggested by the literature, which may provide aid in the development of circulating diagnostic or therapeutic targets for IS patients.


Assuntos
MicroRNA Circulante , AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Humanos , MicroRNAs/metabolismo , Biomarcadores
6.
Genomics ; 114(3): 110379, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526740

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. It has been brought to our attention that the authors of the article "Parallel bimodal single-cell sequencing of transcriptome and methylome provides molecular and translational insights on oocyte maturation and maternal aging" cannot agree on who should be listed as an author of the article. Further inquiry by the journal revealed that the authorship was also changed at the revision stages of the article without notifying the handling Editor, which is contrary to the journal policy on changes to authorship. The journal considers this unacceptable practice, and the Editor-in-Chief decided to retract the article.

7.
Reprod Biol Endocrinol ; 20(1): 101, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836183

RESUMO

BACKGROUND: Maternal obesity is a global issue that has devastating effects across the reproductive spectrum such as meiotic defects in oocytes, consequently worsening pregnancy outcomes. Different studies have shown that such types of meiotic defects originated from the oocytes of obese mothers. Thus, there is an urgent need to develop strategies to reduce the incidence of obesity-related oocyte defects that adversely affect pregnancy outcomes. Multiple growth factors have been identified as directly associated with female reproduction; however, the impact of various growth factors on female fertility in response to obesity remains poorly understood. METHODS: The immature GV-stage oocytes from HFD female mice were collected and cultured in vitro in two different groups (HFD oocytes with and without 50 nM IGF2), however; the oocytes from ND mice were used as a positive control. HFD oocytes treated with or without IGF2 were further used to observe the meiotic structure using different analysis including, the spindle and chromosomal analysis, reactive oxygen species levels, mitochondrial functional activities, and early apoptotic index using immunofluorescence. Additionally, the embryonic developmental competency and embryos quality of IGF2-treated zygotes were also determined. RESULTS: In our findings, we observed significantly reduced contents of insulin-like growth factor 2 (IGF2) in the serum and oocytes of obese mice. Our data indicated supplementation of IGF2 in a culture medium improves the blastocyst formation: from 46% in the HFD group to 61% in the HFD + IGF2-treatment group (50 nM IGF2). Moreover, adding IGF2 to the culture medium reduces the reactive oxygen species index and alleviates the frequency of spindle/chromosome defects. We found increased mitochondrial functional activity in oocytes from obese mice after treating the oocytes with IGF2: observed elevated level of adenosine triphosphate, increased mitochondrial distribution, higher mitochondrial membrane potentials, and reduced mitochondrial ultrastructure defects. Furthermore, IGF2 administration also increases the overall protein synthesis and decreases the apoptotic index in oocytes from obese mice. CONCLUSIONS: Collectively, our findings are strongly in favor of adding IGF2 in culture medium to overcome obesity-related meiotic structural-developmental defects by helping ameliorate the known sub-optimal culturing conditions that are currently standard with assisted reproduction technologies.


Assuntos
Desenvolvimento Embrionário , Oócitos , Animais , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Camundongos , Camundongos Obesos , Obesidade/complicações , Oócitos/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo
8.
Nucleic Acids Res ; 48(8): 4480-4491, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32112110

RESUMO

The genetic etiology of premature ovarian insufficiency (POI) has been well established to date, however, the role of long noncoding RNAs (lncRNAs) in POI is largely unknown. In this study, we identified a down-expressed lncRNA HCP5 in granulosa cells (GCs) from biochemical POI (bPOI) patients, which impaired DNA damage repair and promoted apoptosis of GCs. Mechanistically, we discovered that HCP5 stabilized the interaction between YB1 and its partner ILF2, which could mediate YB1 transferring into the nucleus of GCs. HCP5 silencing affected the localization of YB1 into nucleus and reduced the binding of YB1 to the promoter of MSH5 gene, thereby diminishing MSH5 expression. Taken together, we identified that the decreased expression of HCP5 in bPOI contributed to dysfunctional GCs by regulating MSH5 transcription and DNA damage repair via the interaction with YB1, providing a novel epigenetic mechanism for POI pathogenesis.


Assuntos
Proteínas de Ciclo Celular/genética , Insuficiência Ovariana Primária/genética , RNA Longo não Codificante/metabolismo , Ativação Transcricional , Proteína 1 de Ligação a Y-Box/metabolismo , Adulto , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regulação para Baixo , Epigênese Genética , Feminino , Células da Granulosa/metabolismo , Humanos , Insuficiência Ovariana Primária/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/fisiologia
9.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955660

RESUMO

The sperm flagellum is essential for male fertility. Multiple morphological abnormalities of the sperm flagella (MMAF) is a severe form of asthenoteratozoospermia. MMAF phenotypes are understood to result from pathogenic variants of genes from multiple families including AKAP, DANI, DNAH, RSPH, CCDC, CFAP, TTC, and LRRC, among others. The Leucine-rich repeat protein (LRRC) family includes two members reported to cause MMAF phenotypes: Lrrc6 and Lrrc50. Despite vigorous research towards understanding the pathogenesis of MMAF-related diseases, many genes remain unknown underlying the flagellum biogenesis. Here, we found that Leucine-rich repeat containing 46 (LRRC46) is specifically expressed in the testes of adult mice, and show that LRRC46 is essential for sperm flagellum biogenesis. Both scanning electron microscopy (SEM) and Papanicolaou staining (PS) presents that the knockout of Lrrc46 in mice resulted in typical MMAF phenotypes, including sperm with short, coiled, and irregular flagella. The male KO mice had reduced total sperm counts, impaired sperm motility, and were completely infertile. No reproductive phenotypes were detected in Lrrc46-/- female mice. Immunofluorescence (IF) assays showed that LRRC46 was present throughout the entire flagella of control sperm, albeit with evident concentration at the mid-piece. Transmission electron microscopy (TEM) demonstrated striking flagellar defects with axonemal and mitochondrial sheath malformations. About the important part of the Materials and Methods, SEM and PS were used to observe the typical MMAF-related irregular flagella morphological phenotypes, TEM was used to further inspect the sperm flagellum defects in ultrastructure, and IF was chosen to confirm the location of protein. Our study suggests that LRRC46 is an essential protein for sperm flagellum biogenesis, and its mutations might be associated with MMAF that causes male infertility. Thus, our study provides insights for understanding developmental processes underlying sperm flagellum formation and contribute to further observe the pathogenic genes that cause male infertility.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Anormalidades Múltiplas/genética , Animais , Feminino , Fertilidade/genética , Flagelos , Humanos , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Mutação , Proteínas/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Cauda do Espermatozoide/metabolismo , Espermatogênese/genética , Espermatozoides/patologia , Sequenciamento do Exoma/métodos
10.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207376

RESUMO

A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.


Assuntos
Curcumina/farmacologia , Proteína Forkhead Box O3/metabolismo , Oócitos/efeitos dos fármacos , Reserva Ovariana , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Transdução de Sinais , Análise de Célula Única , Transcriptoma
11.
BMC Microbiol ; 20(1): 230, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727366

RESUMO

BACKGROUND: Primary ovarian failure (POF) is defined as follicular failure in women of reproductive age. Although many factors are speculated to contribute to the occurrence of POF, the exact aetiology remains unclear. Moreover, alterations in the microbiome of patients with POF are poorly studied. RESULTS: This study investigated the vaginal microbiota of 22 patients with POF and 29 healthy individuals. High-throughput Illumina MiSeq sequencing targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene was used to evaluate the relationships between the vaginal flora and clinical characteristics of POF. Different from results of previous studies, we found that the diversity and richness of the vaginal flora of patients with POF was significantly different from those of healthy controls. Comparison of the vaginal flora of patients with POF with that of menopausal women revealed that the relative abundance of Lactobacillus was significantly reduced in the latter. A reduced abundance of Lactobacillus was furthermore associated with a lower pregnancy success rate. Of particular interest is that L. gallinarum especially appeared to be beneficially associated with reproductive-related indicators (FSH, E2, AMH, PRL) whilst L. iners appeared to have a detrimental effect. The result of the present study may enable the identification of microbiota associated with POF, however, further investigations of differences in the microbiota in the context of POF will enable a deeper understanding of the disease pathogenesis that involves modification of the vaginal microbiota. CONCLUSIONS: The present study identified the microbiota associated with POF. Further investigations on the differences in the microbiota in the context of POF will improve our understanding of the pathogenesis of the disease which involves modification of the vaginal microbiota.


Assuntos
Microbiota , Insuficiência Ovariana Primária/microbiologia , Vagina/microbiologia , Adulto , Biomarcadores/sangue , Feminino , Humanos , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Menopausa , Insuficiência Ovariana Primária/sangue , RNA Ribossômico 16S/genética , Reprodução
12.
Int J Neurosci ; 130(1): 52-63, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31512542

RESUMO

Purpose: Gait variability analysis has been clinically adopted to characterize the presentation of various neurological diseases. However, literature and practice lack a comprehensive murine model assessment of the gait deficits that result from transient focal ischemic stroke. Further, correlations between gait parameters and the gene expression profiles associated with brain ischemia have yet to be identified. This study quantitatively assesses gait deficits through a murine model of transient focal cerebral ischemia on day 7 to determine associations between gait deficits and ischemia-related gene expressions.Methods: A total of 182 dynamic and static gait parameters from the transient middle cerebral artery occlusion (MCAO) murine model for simulating human transient focal ischemic stroke on day 7 were measured using the CatWalk system. Pearson's correlation analysis and genes associated with ischemia were identified from the existing literature to aid the investigation of the relationship between gait variability and gene expression profiles.Results: Thirty-nine gait parameters and the mRNA expression levels of four of the eight ischemia-associated genes exhibited more significant change in the MCAO models (p < 0.005) on day 7. Twenty-six gait parameters exhibited strong correlations with four ischemia-associated genes.Conclusion: This examination of gait variability and the strong correlation to the gene expression profiles associated with transient focal brain ischemia on day 7 provides a quantitative and reliable assessment of the MCAO model's motor performance. This research provides valuable insights into the study of disease progression and offers novel therapeutic interventions in the murine modeling of ischemic stroke.


Assuntos
Marcha/genética , Marcha/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Ataque Isquêmico Transitório/genética , Acidente Vascular Cerebral/genética , Animais , Correlação de Dados , Infarto da Artéria Cerebral Média , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/fisiopatologia , Masculino , Camundongos , Córtex Motor/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/fisiopatologia
13.
Biogerontology ; 20(3): 255-269, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666569

RESUMO

Aging is a natural and unavoidable part of life. However, aging is also the primary driver of the dominant human diseases, such as cardiovascular disease, cancer, and neurodegenerative diseases, including Alzheimer's disease. Unraveling the sophisticated molecular mechanisms of the human aging process may provide novel strategies to extend 'healthy aging' and the cure of human aging-related diseases. Werner syndrome (WS), is a heritable human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. As a classical premature aging disease, etiological exploration of WS can shed light on the mechanisms of normal human aging and facilitate the development of interventional strategies to improve healthspan. Here, we summarize the latest progress of the molecular understandings of WRN protein, highlight the advantages of using different WS model systems, including Caenorhabditis elegans, Drosophila melanogaster and induced pluripotent stem cell (iPSC) systems. Further studies on WS will propel drug development for WS patients, and possibly also for normal age-related diseases.


Assuntos
Envelhecimento/patologia , Síndrome de Werner/patologia , Animais , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Modelos Biológicos , Mutação , Síndrome de Werner/genética , Síndrome de Werner/terapia
14.
Exp Cell Res ; 373(1-2): 71-79, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30266657

RESUMO

During spermatogenesis, a group of undifferentiated spermatogonia undergoes an essential transition to a differentiating stage, which involves gain of Kit receptor. In the current study, we showed that a small non-coding RNA, miRNA-26b could induce transition from Kit- to Kit+ and inhibit proliferation of spermatogonia. A key transcriptional factor for undifferentiated spermatogonia, Plzf, was proven as a direct target of miR-26b. When undifferentiated spermatogonia were treated with Retinoic acid (RA), miR-26b was increased, further promoting RA-induced differentiation of spermatogonia. In addition, miR-26b could repress 5-hydroxymethylcytosine (5hmC) via repression of Tet3 in spermatogonia. These findings demonstrate that miR-26b might play a role in promoting the transition from Kit- to Kit+ SSCs.


Assuntos
MicroRNAs/fisiologia , Espermatogênese , Espermatogônias/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Apoptose , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Masculino , Camundongos , MicroRNAs/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-kit/análise , Espermatogônias/citologia , Espermatogônias/efeitos dos fármacos , Tretinoína/farmacologia
15.
BMC Biol ; 16(1): 151, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593266

RESUMO

BACKGROUND: Cultured human cells are pivotal models to study human gene functions, but introducing complete loss of function in diploid or aneuploid cells has been a challenge. The recently developed CRISPR/Cas9-mediated homology-independent knock-in approach permits targeted insertion of large DNA at high efficiency, providing a tool for insertional disruption of a selected gene. Pioneer studies have showed promising results, but the current methodology is still suboptimal and functional outcomes have not been well examined. Taking advantage of the promoterless fluorescence reporter systems established in our previous study, here, we further investigated potentials of this new insertional gene disruption approach and examined its functional outcomes. RESULTS: Exemplified by using hyperploid LO2 cells, we demonstrated that simultaneous knock-in of dual fluorescence reporters through CRISPR/Cas9-induced homology-independent DNA repair permitted one-step generation of cells carrying complete disruption of target genes at multiple alleles. Through knocking-in at coding exons, we generated stable single-cell clones carrying complete disruption of ULK1 gene at all four alleles, lacking intact FAT10 in all three alleles, or devoid of intact CtIP at both alleles. We have confirmed the depletion of ULK1 and FAT10 transcripts as well as corresponding proteins in the obtained cell clones. Moreover, consistent with previous reports, we observed impaired mitophagy in ULK1-/- cells and attenuated cytokine-induced cell death in FAT10-/- clones. However, our analysis showed that single-cell clones carrying complete disruption of CtIP gene at both alleles preserved in-frame aberrant CtIP transcripts and produced proteins. Strikingly, the CtIP-disrupted clones raised through another two distinct targeting strategies also produced varied but in-frame aberrant CtIP transcripts. Sequencing analysis suggested that diverse DNA processing and alternative RNA splicing were involved in generating these in-frame aberrant CtIP transcripts, and some infrequent events were biasedly enriched among the CtIP-disrupted cell clones. CONCLUSION: Multiallelic gene disruption could be readily introduced through CRISPR/Cas9-induced homology-independent knock-in of dual fluorescence reporters followed by direct tracing and cell isolation. Robust cellular mechanisms exist to spare essential genes from loss-of-function modifications, by generating partially functional transcripts through diverse DNA and RNA processing mechanisms.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Reparo do DNA , Técnicas de Introdução de Genes/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Ubiquitinas/genética , Linhagem Celular , Endodesoxirribonucleases , Mutagênese Insercional
16.
Biochem Biophys Res Commun ; 496(1): 191-198, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29307835

RESUMO

PURPOSE: Characterization of the genetic landscapes of familial ovarian cancer through integrated analysis of microRNA and mRNA by partial least squares (PLS) and Monte Carlo technique based on genome-wide association studies (GWAS). METHODS: The miRNA and mRNA transcriptional data in familial ovarian cancer were characterized from the Gene Expression Omnibus (GEO) database. The miRNA and mRNA expression profiles in peripheral blood lymphocytes (PBLs) of 74 familial ovarian cancer patients and 47 control subjects were analyzed with the integration of partial least squares (PLS) and Monte Carlo techniques. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were also performed. RESULTS: Total of 16 miRNA-mRNA pairs were identified with the target gene prediction results of miRNAs and mRNAs. An innovated miRNA-mRNA integrated network was constructed in which 6 downregulated miRNAs and 1 upregulated miRNAs were included. KEGG and GO pathway enrichment analysis revealed over-representation of dysregulated miRNAs in various biological processes especially in cancer pathology. Hsa-miR-34b played a pivotal role in this network and interacted with other miRNAs. Hsa-miR-136 and hsa-miR-335 were associated with p53 and Erk1/2 pathways and tumor suppressors, such as PTEN. CONCLUSIONS: The results from this research provide insights on miRNA-mRNA networks and offer new tools for studying transcriptional variants in familial ovarian cancer.


Assuntos
Biomarcadores Tumorais/genética , Linfócitos/metabolismo , MicroRNAs/genética , Neoplasias Epiteliais e Glandulares/epidemiologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , RNA Mensageiro/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Carcinoma Epitelial do Ovário , China/epidemiologia , Feminino , Estudos de Associação Genética , Marcadores Genéticos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Humanos , MicroRNAs/sangue , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Ovarianas/diagnóstico , Prevalência , RNA Mensageiro/sangue , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade , Adulto Jovem
18.
Nucleic Acids Res ; 43(16): 7805-22, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26130713

RESUMO

Ten eleven translocation (Tet) family-mediated DNA oxidation on 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) represents a novel epigenetic modification that regulates dynamic gene expression during embryonic stem cells (ESCs) differentiation. Through the role of Tet on 5hmC regulation in stem cell development is relatively defined, how the Tet family is regulated and impacts on ESCs lineage development remains elusive. In this study, we show non-coding RNA regulation on Tet family may contribute to epigenetic regulation during ESCs differentiation, which is suggested by microRNA-29b (miR-29b) binding sites on the Tet1 3' untranslated region (3' UTR). We demonstrate miR-29b increases sharply after embyoid body (EB) formation, which causes Tet1 repression and reduction of cellular 5hmC level during ESCs differentiation. Importantly, we show this miR-29b/Tet1 regulatory axis promotes the mesendoderm lineage formation both in vitro and in vivo by inducing the Nodal signaling pathway and repressing the key target of the active demethylation pathway, Tdg. Taken together, our findings underscore the contribution of small non-coding RNA mediated regulation on DNA demethylation dynamics and the differential expressions of key mesendoderm regulators during ESCs lineage specification. MiR-29b could potentially be applied to enrich production of mesoderm and endoderm derivatives and be further differentiated into desired organ-specific cells.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , MicroRNAs/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Células Cultivadas , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Ectoderma/citologia , Corpos Embrioides/citologia , Endoderma/citologia , Células HEK293 , Humanos , Fatores de Determinação Direita-Esquerda/genética , Mesoderma/citologia , Camundongos , MicroRNAs/biossíntese , Células-Tronco Embrionárias Murinas/citologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Timina DNA Glicosilase/metabolismo
19.
Br J Cancer ; 114(2): 230-6, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26625006

RESUMO

BACKGROUND: Testicular embryonal carcinoma (EC) is a major subtype of non-seminomatous germ cell tumours in males. Embryonal carcinomas are pluripotent, undifferentiated germ cell tumours believed to originate from primordial germ cells. Epigenetic changes during testicular EC tumorigenesis require better elucidation. METHODS: To identify epigenetic changes during testicular neoplastic transformation, we profiled DNA methylation of six ECs. These samples represent different stages (stage I and stage III) of divergent invasiveness. Non-cancerous testicular tissues were included. Expression of a number of hypermethylated genes were examined by quantitative RT-PCR and immunohistochemistry (IHC). RESULTS: A total of 1167 tumour-hypermethylated differentially methylated regions (DMRs) were identified across the genome. Among them, 40 genes/ncRNAs were found to have hypermethylated promoters. Quantitative RT-PCR confirmed downregulation of 8 out of 9 of the genes. Among the confirmed genes, five were sex-linked genes, including X-linked genes STAG2, SPANXD/E and MIR1184, and Y-linked genes RBMY1A1/1B/1D and FAM197Y2P. RBMY1A is a testis-specific gene for spermatogenesis. RNF168 and USP13 are potential tumour suppressors. Expression of RBMY1A was lost in EC and seminoma as documented in the Protein Atlas. We confirmed downregulation of USP13 in EC by IHC. CONCLUSIONS: Our genome-wide analysis of testicular EC identified methylation changes in several previously unknown genes. This may provide insight of crosstalk between normal germ cell development and carcinogenesis.


Assuntos
Carcinoma Embrionário/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Testiculares/genética , Aciltransferases/genética , Adolescente , Adulto , Carcinoma Embrionário/patologia , Estudos de Casos e Controles , Estudos de Coortes , Endopeptidases/genética , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Testiculares/patologia , Análise Serial de Tecidos , Ubiquitina-Proteína Ligases/genética , Proteases Específicas de Ubiquitina , Adulto Jovem
20.
Int J Mol Sci ; 17(6)2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27240359

RESUMO

MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Doenças do Sistema Nervoso/genética , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Epigênese Genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA