Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2217946120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877845

RESUMO

Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored. Here, we present high-precision noble gas isotope and elemental ratios from the deep North Atlantic (~32°N, 64°W) to evaluate gas exchange parameterizations using an ocean circulation model. The unprecedented precision of these data reveal deep-ocean undersaturation of heavy noble gases and isotopes resulting from cooling-driven air-to-sea gas transport associated with deep convection in the northern high latitudes. Our data also imply an underappreciated and large role for bubble-mediated gas exchange in the global air-sea transfer of sparingly soluble gases, including O2, N2, and SF6. Using noble gases to validate the physical representation of air-sea gas exchange in a model also provides a unique opportunity to distinguish physical from biogeochemical signals. As a case study, we compare dissolved N2/Ar measurements in the deep North Atlantic to physics-only model predictions, revealing excess N2 from benthic denitrification in older deep waters (below 2.9 km). These data indicate that the rate of fixed N removal in the deep Northeastern Atlantic is at least three times higher than the global deep-ocean mean, suggesting tight coupling with organic carbon export and raising potential future implications for the marine N cycle.

2.
Proc Natl Acad Sci U S A ; 117(22): 11954-11960, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424089

RESUMO

Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget.

3.
Rapid Commun Mass Spectrom ; 36(4): e9224, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-34787344

RESUMO

RATIONALE: Analyses of the isotope ratios of nitrogen (15 N/14 N) and oxygen (18 O/16 O) in nitrate (NO3 - ) with the denitrifier method require relatively high sample volumes at low concentrations (≤1 µM) to afford sufficient analyte for mass spectrometry, resulting in isotopic offsets compared to more concentrated samples of the same isotopic composition. METHODS: To uncover the origins of isotopic offsets, we analyzed the N and O isotope ratios of NO3 - reference materials spanning concentrations of 0.5-20 µM. We substantiated the incidence of volume-dependent isotopic offsets, then investigated whether they resulted from (a) incomplete sample recovery during N2 O sparging, (b) blanks - bacterial, atmospheric, or in reference material solutions - and (c) oxygen atom exchange with water during the bacterial conversion of NO3 - to N2 O. RESULTS: Larger sample volumes resulted in modest offsets in δ15 N, but substantial offsets in δ18 O. N2 O recovery from sparging was less complete at higher volumes, resulting in decreases in δ15 N and δ18 O due to associated isotope fractionation. Blanks increased detectably with volume, whereas oxygen atom exchange with water remained constant within batch analyses, being sensitive to neither sample volume nor salinity. The sizeable offsets in δ18 O with volume are only partially explained by the factors considered in our analysis. CONCLUSIONS: Our observations argue for bracketing of NO3 - samples with reference materials that emulate sample volumes (concentrations) to achieve improved measurement accuracy and foster inter-comparability.

4.
Proc Natl Acad Sci U S A ; 116(15): 7220-7225, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910952

RESUMO

The dynamics of nitrogen (N) loss in the ocean's oxygen-deficient zones (ODZs) are thought to be driven by climate impacts on ocean circulation and biological productivity. Here we analyze a data-constrained model of the microbial ecosystem in an ODZ and find that species interactions drive fluctuations in local- and regional-scale rates of N loss, even in the absence of climate variability. By consuming O2 to nanomolar levels, aerobic nitrifying microbes cede their competitive advantage for scarce forms of N to anaerobic denitrifying bacteria. Because anaerobes cannot sustain their own low-O2 niche, the physical O2 supply restores competitive advantage to aerobic populations, resetting the cycle. The resulting ecosystem oscillations induce a unique geochemical signature within the ODZ-short-lived spikes of ammonium that are found in measured profiles. The microbial ecosystem dynamics also give rise to variable ratios of anammox to heterotrophic denitrification, providing a mechanism for the unexplained variability of these pathways observed in the ocean.


Assuntos
Organismos Aquáticos/fisiologia , Bactérias Anaeróbias/fisiologia , Clima , Ecossistema , Consórcios Microbianos/fisiologia , Nitrogênio/metabolismo , Amônia/metabolismo , Desnitrificação/fisiologia , Oxigênio/metabolismo
5.
FEMS Microbiol Ecol ; 94(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016420

RESUMO

In marine oxygen deficient zones (ODZs), which contribute up to half of marine N loss, microbes use nitrogen (N) for assimilatory and dissimilatory processes. Here, we examine N utilization above and within the ODZ of the Eastern Tropical North Pacific Ocean, focusing on distribution, uptake and genes for the utilization of two simple organic N compounds, urea and cyanate. Ammonium, urea and cyanate concentrations generally peaked in the oxycline while uptake rates were highest in the surface. Within the ODZ, concentrations were lower, but urea N and C and cyanate C were taken up. All identified autotrophs had an N assimilation pathway that did not require external ammonium: ODZ Prochlorococcus possessed genes to assimilate nitrate, nitrite and urea; nitrite oxidizers (Nitrospina) possessed genes to assimilate nitrite, urea and cyanate; anammox bacteria (Scalindua) possessed genes to utilize cyanate; and ammonia-oxidizing Thaumarchaeota possessed genes to utilize urea. Urease genes were present in 20% of microbes, including SAR11, suggesting the urea utilization capacity was widespread. In the ODZ core, cyanate genes were largely (∼95%) associated with Scalindua, suggesting that, within this ODZ, cyanate N is primarily used for N loss via anammox (cyanammox), and that anammox does not require ammonium for N loss.


Assuntos
Cianatos/metabolismo , Oxigênio/análise , Água do Mar/química , Água do Mar/microbiologia , Ureia/metabolismo , Compostos de Amônio/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Oceano Pacífico
6.
ISME J ; 11(1): 263-271, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27434424

RESUMO

Marine oxygen minimum zones (OMZs) are expanding regions of intense nitrogen cycling. Up to half of the nitrogen available for marine organisms is removed from the ocean in these regions. Metagenomic studies have identified an abundant group of sulfur-oxidizing bacteria (SUP05) with the genetic potential for nitrogen cycling and loss in OMZs. However, SUP05 have defied cultivation and their physiology remains untested. We cultured, sequenced and tested the physiology of an isolate from the SUP05 clade. We describe a facultatively anaerobic sulfur-oxidizing chemolithoautotroph that produces nitrite and consumes ammonium under anaerobic conditions. Genetic evidence that closely related strains are abundant at nitrite maxima in OMZs suggests that sulfur-oxidizing chemoautotrophs from the SUP05 clade are a potential source of nitrite, fueling competing nitrogen removal processes in the ocean.


Assuntos
Compostos de Amônio/metabolismo , Bactérias/metabolismo , Nitritos/metabolismo , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Crescimento Quimioautotrófico , Metagenômica , Nitrogênio/metabolismo , Oxirredução , Oxigênio/metabolismo , Enxofre/metabolismo
7.
ISME J ; 11(10): 2356-2367, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28742073

RESUMO

Biological nitrogen fixation (BNF) was investigated above and within the oxygen-depleted waters of the oxygen-minimum zone of the Eastern Tropical North Pacific Ocean. BNF rates were estimated using an isotope tracer method that overcame the uncertainty of the conventional bubble method by directly measuring the tracer enrichment during the incubations. Highest rates of BNF (~4 nM day-1) occurred in coastal surface waters and lowest detectable rates (~0.2 nM day-1) were found in the anoxic region of offshore stations. BNF was not detectable in most samples from oxygen-depleted waters. The composition of the N2-fixing assemblage was investigated by sequencing of nifH genes. The diazotrophic assemblage in surface waters contained mainly Proteobacterial sequences (Cluster I nifH), while both Proteobacterial sequences and sequences with high identities to those of anaerobic microbes characterized as Clusters III and IV type nifH sequences were found in the anoxic waters. Our results indicate modest input of N through BNF in oxygen-depleted zones mainly due to the activity of proteobacterial diazotrophs.


Assuntos
Oxigênio/análise , Proteobactérias/metabolismo , Água do Mar/microbiologia , Fixação de Nitrogênio , Oxigênio/metabolismo , Oceano Pacífico , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA