Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Toxicol ; 39(6): 3356-3366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38444163

RESUMO

Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.


Assuntos
Antineoplásicos , Apoptose , Melanoma , Transdução de Sinais , Xantofilas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Xantofilas/farmacologia
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511611

RESUMO

Bladder cancer is the leading urinary tract malignancy. Epidemiological evidence has linked lower cancer incidence in schizophrenia patients to long-term medication, highlighting the anticancer potential of antipsychotics. Sertindole is an atypical antipsychotic agent with reported anticancer action on breast and gastric cancers. Yet, sertindole's effect on bladder cancer remains unaddressed. We herein present the first evidence of sertindole's antiproliferative effect and mechanisms of action on human bladder cancer cells. Sertindole was cytotoxic against bladder cancer cells while less cytotoxic to normal urothelial cells. Apoptosis was a primary cause of sertindole's cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk rescued cells from sertindole-induced killing. Mechanistically, sertindole inhibited the activation of signal transducer and activator of transcription 3 (STAT3), an oncogenic driver of bladder cancer, as sertindole lowered the levels of tyrosine 705-phosphorylated STAT3 along with that of STAT3's target gene BCL-xL. Notably, ectopic expression of the dominant-active STAT3 mutant impaired sertindole-induced apoptosis in addition to restoring BCL-xL expression. Moreover, bladder cancer cells overexpressing BCL-xL were refractory to sertindole's proapoptotic action, arguing that sertindole represses STAT3 to downregulate BCL-xL, culminating in the induction of apoptosis. Overall, the current study indicated sertindole exerts bladder cancer cytotoxicity by provoking apoptosis through targeted inhibition of the antiapoptotic STAT3/BCL-xL signaling axis. These findings implicate the potential to repurpose sertindole as a therapeutic strategy for bladder cancer.


Assuntos
Antipsicóticos , Neoplasias da Bexiga Urinária , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Apoptose , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Linhagem Celular Tumoral
3.
Environ Toxicol ; 37(1): 131-141, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34664771

RESUMO

Bisphenol A (BPA) is an estrogen-like compound, and an environmental hormone, that is commonly used in daily life. Therefore, it may enter the human body through food or direct contact, causing BPA residues in blood and urine. Because most studies focused on the analysis of BPA in reproductive cells or tissues, regarding evidence the effect of BPA on human retinal pigment epithelium (ARPE-19) cells unavailable. Accordingly, the present study explored the cytotoxicity of BPA on ARPE-19 cells. After BPA treatment, the expression of Bcl-XL an antiapoptotic protein, in the mitochondria decreased, and the expression of Bax, a proapoptotic protein increased. Then the mitochondrial membrane potential was affected. BPA changed in mitochondrial membrane potential led to the release of cytochrome C, which activated caspase-9 to promote downstream caspase-3 leading to cytotoxicity. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) pathway play a major role in age-related macular degeneration. Our results showed that expression of HO-1 and Nrf2 suppressed by BPA. Superoxide dismutase and catalase, which Nrf2 downstream antioxidants, were degraded by BPA. AMP-activated kinase (AMPK), which can regulate the phosphorylation of Nrf2, and the phosphorylation of AMPK expression was reduced by BPA. Finally, BPA-induced ROS generation and cytotoxicity were reduced by N-acetyl-l-cysteine. Taken together, these results suggest that BPA induced ARPE-19 cells via oxidative stress, which was associated with down regulated Nrf2/HO-1 pathway, and the mitochondria dependent apoptotic signaling pathway.


Assuntos
Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Apoptose , Compostos Benzidrílicos , Sobrevivência Celular , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fenóis , Epitélio Pigmentado da Retina/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613579

RESUMO

Bladder cancer is a leading human malignancy worldwide. Signal transducer and activator of transcription (STAT) 3 is an oncogenic transcription factor commonly hyperactivated in most human cancers, including bladder cancer. Notably, preclinical evidence has validated STAT3 blockade as a promising therapeutic strategy for bladder cancer. Hispolon Methyl Ether (HME) is a structural analog of hispolon, an anticancer component of the medicinal mushroom Phellinus linteus. Thus far, HME's anticancer activity and mechanisms remain largely unknown. We herein report HME was cytotoxic, more potent than cisplatin, and proapoptotic to various human bladder transitional carcinoma cell lines. Of note, HME blocked STAT3 activation, evidenced by HME-elicited reduction in tyrosine 705-phosphorylated STAT3 levels constitutively expressed or induced by interleukin-6. Significantly, HME-induced cytotoxicity was abrogated in cells expressing a dominant-active STAT3 mutant (STAT3-C), confirming STAT3 blockage as a pivotal mechanism of HME's cytotoxic action. We further revealed that survivin was downregulated by HME, while its levels were rescued in STAT3-C-expressing cells. Moreover, survivin overexpression abolished HME-induced cytotoxicity, illustrating survivin as a central downstream mediator of STAT3 targeted by HME. Lastly, HME was shown to lower tyrosine 416-phosphorylated SRC levels, suggesting that HME inhibits STAT3 by repressing the activation of SRC, a STAT3 upstream kinase. In conclusion, we present the first evidence of HME's anti-bladder cancer effect, likely proceeding by evoking apoptosis through suppression of the antiapoptotic SRC/STAT3/survivin signaling axis.


Assuntos
Antineoplásicos , Carcinoma , Neoplasias da Bexiga Urinária , Humanos , Survivina/metabolismo , Bexiga Urinária/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Apoptose , Fator de Transcrição STAT3/metabolismo , Proliferação de Células
5.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150830

RESUMO

Colorectal cancer (CRC) is a highly prevailing cancer and the fourth leading cause of cancer mortality worldwide. Aberrant expression of antiapoptotic BCL-2 family proteins is closely linked to neoplastic progression and chemoresistance. Obatoclax is a clinically developed drug, which binds antiapoptotic BCL-2, BCL-xL, and MCL-1 for inhibition to elicit apoptosis. Survivin is an antiapoptotic protein, whose upregulation correlates with pathogenesis, therapeutic resistance, and poor prognosis in CRC. Herein, we provide the first evidence delineating the functional linkage between Obatoclax and survivin in the context of human CRC cells. In detail, Obatoclax was found to markedly downregulate survivin. This downregulation was mainly achieved via transcriptional repression, as Obatoclax lowered the levels of both survivin mRNA and promoter activity, while blocking proteasomal degradation failed to prevent survivin from downregulation by Obatoclax. Notably, ectopic survivin expression curtailed Obatoclax-induced apoptosis and cytotoxicity, confirming an essential role of survivin downregulation in Obatoclax-elicited anti-CRC effect. Moreover, Obatoclax was found to repress hyperactive WNT/ß-catenin signaling activity commonly present in human CRC cells, and, markedly, ectopic expression of dominant-active ß-catenin mutant rescued the levels of survivin along with elevated cell viability. We further revealed that, depending on the cell context, Obatoclax suppresses WNT/ß-catenin signaling in HCT 116 cells likely via inducing ß-catenin destabilization, or by downregulating LEF1 in DLD-1 cells. Collectively, we for the first time define survivin downregulation as a novel, pro-apoptotic mechanism of Obatoclax as a consequence of Obatocalx acting as an antagonist to WNT/ß-catenin signaling.


Assuntos
Apoptose , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirróis/farmacologia , Survivina/antagonistas & inibidores , Proteínas Wnt/antagonistas & inibidores , beta Catenina/antagonistas & inibidores , Biomarcadores Tumorais , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 21(22)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266494

RESUMO

Colorectal cancer (CRC) is the fourth leading cause of cancer mortality worldwide. Aberrant activation of WNT/ß-catenin signaling present in the vast majority of CRC cases is indispensable for CRC initiation and progression, and thus is a promising target for CRC therapeutics. Hispolon is a fungal-derived polyphenol with a pronounced anticancer effect. Several hispolon derivatives, including dehydroxyhispolon methyl ether (DHME), have been chemically synthesized for developing lead molecules with stronger anticancer activity. Herein, a DHME-elicited anti-CRC effect with the underlying mechanism is reported for the first time. Specifically, DHME was found to be more cytotoxic than hispolon against a panel of human CRC cell lines, while exerting limited toxicity to normal human colon cell line CCD 841 CoN. Additionally, the cytotoxic effect of DHME appeared to rely on inducing apoptosis. This notion was evidenced by DHME-elicited upregulation of poly (ADP-ribose) polymerase (PARP) cleavage and a cell population positively stained by annexin V, alongside the downregulation of antiapoptotic B-cell lymphoma 2 (BCL-2), whereas the blockade of apoptosis by the pan-caspase inhibitor z-VAD-fmk attenuated DHME-induced cytotoxicity. Further mechanistic inquiry revealed the inhibitory action of DHME on ß-catenin-mediated, T-cell factor (TCF)-dependent transcription activity, suggesting that DHME thwarted the aberrantly active WNT/ß-catenin signaling in CRC cells. Notably, ectopic expression of a dominant-active ß-catenin mutant (∆N90-ß-catenin) abolished DHME-induced apoptosis while also restoring BCL-2 expression. Collectively, we identified DHME as a selective proapoptotic agent against CRC cells, exerting more potent cytotoxicity than hispolon, and provoking CRC cell apoptosis via suppression of the WNT/ß-catenin signaling axis.


Assuntos
Apoptose , Neoplasias Colorretais/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Antineoplásicos/farmacologia , Basidiomycota/química , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética
7.
Small ; 15(49): e1904723, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31657122

RESUMO

The generation of ammonia, hydrogen production, and nitrogen purification are considered as energy intensive processes accompanied with large amounts of CO2 emission. An electrochemical method assisted by photoenergy is widely utilized for the chemical energy conversion. In this work, earth-abundant iron pyrite (FeS2 ) nanocrystals grown on carbon fiber paper (FeS2 /CFP) are found to be an electrochemical and photoactive catalyst for nitrogen reduction reaction under ambient temperature and pressure. The electrochemical results reveal that FeS2 /CFP achieves a high Faradaic efficiency (FE) of ≈14.14% and NH3 yield rate of ≈0.096 µg min-1 at -0.6 V versus RHE electrode in 0.25 m LiClO4 . During the electrochemical catalytic reaction, the crystal structure of FeS2 /CFP remains in the cubic pyrite phase, as analyzed by in situ X-ray diffraction measurements. With near-infrared laser irradiation (808 nm), the NH3 yield rate of the FeS2 /CFP catalyst can be slightly improved to 0.1 µg min-1 with high FE of 14.57%. Furthermore, density functional theory calculations demonstrate that the N2 molecule has strong chemical adsorption energy on the iron atom of FeS2 . Overall, iron pyrite-based materials have proven to be a potential electrocatalyst with photoactive behavior for ammonia production in practical applications.

8.
Int J Mol Sci ; 20(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323961

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with poor prognosis, largely due to resistance to current radiotherapy and Temozolomide chemotherapy. The constitutive activation of Signal Transducer and Activator of Transcription 3 (STAT3) is evidenced as a pivotal driver of GBM pathogenesis and therapy resistance, and hence, is a promising GBM drug target. 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF) is an acetylated derivative of Tangeretin which is known to exert anticancer effects on breast, colon, lung, and multiple myeloma; however, its effect on GBM remains elusive. Herein, we reported that 5-AcTMF suppressed the viability and clonogenicity along with inducing apoptosis in multiple human GBM cell lines. Mechanistic analyses further revealed that 5-AcTMF lowered the levels of Tyrosine 705-phosphorylated STAT3 (p-STAT3), a canonical marker of STAT3 activation, but also dampened p-STAT3 upregulation elicited by Interleukin-6. Notably, ectopic expression of dominant-active STAT3 impeded 5-AcTMF-induced suppression of viability and clonogenicity plus apoptosis induction in GBM cells, confirming the prerequisite of STAT3 blockage for the inhibitory action of 5-AcTMF on GBM cell survival and growth. Additionally, 5-AcTMF impaired the activation of STAT3 upstream kinase JAK2 but also downregulated antiapoptotic BCL-2 and BCL-xL in a STAT3-dependent manner. Moreover, the overexpression of either BCL-2 or BCL-xL abrogated 5-AcTMF-mediated viability reduction and apoptosis induction in GBM cells. Collectively, we, for the first time, revealed the anticancer effect of 5-AcTMF on GBM cells, which was executed via thwarting the JAK2-STAT3-BCL-2/BCL-xL signaling axis. Our findings further implicate the therapeutic potential of 5-AcTMF for GBM treatment.


Assuntos
Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Flavonas/química , Flavonas/farmacologia , Glioblastoma/metabolismo , Fases de Leitura Aberta/genética , Fator de Transcrição STAT3/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Interleucina-6/metabolismo , Fator de Transcrição STAT3/genética , Proteína bcl-X/metabolismo
9.
Mar Drugs ; 16(12)2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30513611

RESUMO

11-Dehydrosinulariolide, an active compound that is isolated from the cultured soft coral Sinularia flexibilis, has been suggested to show anti-tumor biological characteristics according to previous studies. However, its potential effect on small cell lung cancer (SCLC) remains unknown. The present study investigates the underlying mechanism for the treatment of SCLC in vitro and in vivo. Cell viability was examined using the methyl-thiazol-diphenyl-tetrazolium (MTT) assay. Flow cytometry was applied to evaluate cell cycle distribution and apoptosis. The expression of proteins related to the cell cycle and apoptosis was analyzed by Western blot analysis. Additionally, an in vivo study was performed to determine the anti-SCLC effect on an H1688 subcutaneous tumor in a BALB/c nude mouse model. 11-Dehydrosinulariolide inhibited cell growth, triggered G2/M arrest and induced H1688 cell apoptosis in a dose- and time-dependent manner. Additionally, 11-dehydrosinulariolide caused the accumulation of p53 and Bax, accompanied by the activation of DNA damage-inducing kinases, including ataxia-telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2). Moreover, 11-dehydrosinulariolide increased the activity of caspase-3 and -7, suggesting that caspases are involved in 11-dehydrosinulariolide-induced apoptosis. 11-Dehydrosinulariolide also increased the level of tumor suppressor phosphatase and tensin homolog (PTEN) and inhibited the expression of phosphorylated Akt. In the in vivo study, the intraperitoneal injection of 11-dehydrosinulariolide at a dosage of 10 mg/kg significantly inhibited tumor growth compared with the control treatment. Together, the data indicate that 11-dehydrosinulariolide induces G (2)/M cell cycle arrest and apoptosis through various cellular processes, including the upregulation of p53 and Bax, activation of ATM and Chk2, activation of caspase-3 and -7, and accumulation of PTEN, leading to inhibition of the Akt pathway. These findings suggest that 11-dehydrosinulariolide might serve as a promising chemotherapy drug in the treatment of SCLC.


Assuntos
Antozoários/química , Antineoplásicos/farmacologia , Diterpenos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Diterpenos/isolamento & purificação , Diterpenos/uso terapêutico , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma de Pequenas Células do Pulmão/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 18(1)2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035994

RESUMO

Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G1-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G1-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.


Assuntos
Carcinoma/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Ciclina D1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirróis/farmacologia , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Indóis , Proteólise , Pirróis/toxicidade
11.
Chem Res Toxicol ; 28(8): 1574-83, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26203587

RESUMO

Tanshinone IIA (TIIA) extracted from Salvia miltiorrhiza has been shown to possess antitumor and TRAIL-sensitizing activity. The involvement of DR5 in the mechanism whereby TIIA exerts its effects is unknown. This study aimed to explore the mechanism underlying TIIA augmentation of TRAIL-induced cell death in ovarian carcinoma cells. Cell viability was determined by MTS assay. Real-time RT-PCR and Western blotting were used to assess the mRNA and protein expression of relating signaling proteins. Transcriptional activation was explored by a dual-luciferase reporter assay. We found that TIIA sensitized human ovarian carcinoma cells to TRAIL-induced extrinsic apoptosis. Combined treatment with subtoxic concentrations of TIIA and TRAIL was more effective than single treatments with respect to cytotoxicity, clonogenic inhibition, and the induction of caspase-8 and PARP activity in ovarian carcinoma cell lines TOV-21G and SKOV3. TIIA induced DR5 protein and mRNA expression in a concentration-dependent manner. DR5/Fc treatment markedly suppressed the TRAIL cytotoxicity enhanced by TIIA. These results indicate that DR5 plays an essential role in TIIA-induced TRAIL sensitization and that induction of DR5 by TIIA is mediated through the up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP). Knockdown of CHOP gene expression by shRNA attenuated DR5 up-regulation and rescued cell viability under the treatment of TIIA-TRAIL combination. TIIA promoted JNK-mediated signaling to up-regulated CHOP and thereby inducing DR5 expression as shown by the ability of a JNK inhibitor to potently suppress the TIIA-mediated activation of CHOP and DR5. In addition, the quenching of ROS using NAC prevented the induction of JNK phosphorylation and CHOP induction. Furthermore, inhibition of ROS by NAC significantly attenuated TRAIL sensitization by TIIA. Taken together, these data suggest that TIIA enhances TRAIL-induced apoptosis by upregulating DR5 receptors through the ROS-JNK-CHOP signaling axis in human ovarian carcinoma cells.


Assuntos
Abietanos/farmacologia , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Modelos Biológicos , Neoplasias Ovarianas/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
J Cell Sci ; 125(Pt 20): 4853-64, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22854048

RESUMO

Hepatocyte growth factor/scatter factor (HGF) is unique by inducing epithelial cell scattering, a cellular event pivotal to HGF-mediated invasive-growth response essential for embryonic development and metastasis. Krüppel-like factor 4 (KLF4) is a multifunctional zinc-finger transcription factor involved in cell proliferation, differentiation and self-renewal. We herein present the first evidence for the functional connection between KLF4 and HGF-induced cell scattering. In particular, we found that KLF4 was upregulated by HGF in two independent epithelial cell types, HepG2 and MDCK, whereas KLF4 knockdown inhibited HGF-induced E-cadherin suppression and cell scattering. Moreover, enforced nuclear KLF4 expression alone was sufficient to upregulate KLF4, downregulate E-cadherin and trigger scattering. Chromatin immunoprecipitation (ChIP) analysis further revealed that KLF4 induced suppression of E-cadherin transcription by directly binding to the E-cadherin promoter. Additionally, we proved that HGF-induced upregulation of KLF4 transcription and cell scattering require activation of the MEK/ERK signaling pathway and the induction of early growth response 1 (EGR-1). At the mechanistic level, ChIP analysis validated a direct binding of EGR-1 to the KLF4 promoter to induce KLF4 transcription; in turn, EGR-1-induced KLF4 binds to its own promoter, thus creating a positive feedback mechanism to sustain KLF4 expression and the resultant cell scattering. We conclude that KLF4 upregulation by HGF represents a novel mechanism mediating HGF-induced cell scattering and perhaps other associated events such as cell migration and invasion.


Assuntos
Movimento Celular/genética , Células Epiteliais , Fator de Crescimento de Hepatócito , Fatores de Transcrição Kruppel-Like , Animais , Caderinas/genética , Caderinas/metabolismo , Cães , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Desenvolvimento Embrionário/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Sistema de Sinalização das MAP Quinases , Células Madin Darby de Rim Canino , Invasividade Neoplásica , Metástase Neoplásica/genética , Transdução de Sinais
13.
Toxicol Appl Pharmacol ; 279(3): 351-363, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25018059

RESUMO

Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 µM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways.


Assuntos
Antioxidantes , Apoptose/fisiologia , Lipoproteínas LDL/antagonistas & inibidores , Lipoproteínas LDL/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Taurina/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Western Blotting , Sinalização do Cálcio/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/biossíntese , DNA/genética , Células Epiteliais , Humanos , Marcação In Situ das Extremidades Cortadas , Rim/citologia , Rim/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Lipoproteínas/isolamento & purificação , Lipoproteínas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Confocal , Superóxido Dismutase/metabolismo
14.
Gut ; 62(4): 606-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22773548

RESUMO

OBJECTIVE: Type 2 diabetes mellitus is associated with a higher risk of hepatocellular carcinoma (HCC), which is attenuated by the use of metformin. However, there are no studies addressing the effect of metformin on hepatocarcinoma cells from the antitumoural perspective. DESIGN: In the nationwide case-control study, the authors recruited 97,430 HCC patients and 19,860 age-, gender- and physician visit date-matched controls. The chemopreventive effects of metformin were examined by multivariate analysis and stratified analysis. The in vitro effects of metformin on cell proliferation and cell cycle were studied in HepG2 and Hep3B hepatoma cell lines. RESULTS: The OR of diabetes in HCC patients was 2.29 (95% CI 2.25 to 2.35, p<0.001). Each incremental year increase in metformin use resulted in 7% reduction in the risk of HCC in diabetic patients (adjusted OR=0.93, 95% CI 0.91 to 0.94, p<0.0001). In the multivariate stratified analysis, metformin use was associated with a reduced risk of HCC in diabetic patients in nearly all subgroups. Cell line studies showed that metformin inhibits hepatocyte proliferation and induces cell cycle arrest at G0/G1 phase via AMP-activated protein kinase and its upstream kinase LKB1 to upregulate p21/Cip1 and p27/Kip1 and downregulate cyclin D1 in a dose-dependent manner, but independent of p53. Combined treatment of oral metformin with doxorubicin functioned more efficiently than either agent alone, in vivo. CONCLUSIONS: Use of metformin is associated with a decreased risk of HCC in diabetic patients in a dose-dependent manner, via inhibition of hepatoma cells proliferation and induction of cell cycle arrest at G0/G1 phase.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Metformina/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibióticos Antineoplásicos/farmacologia , Western Blotting , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioprevenção/métodos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Feminino , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno , Células Tumorais Cultivadas
15.
Artigo em Inglês | MEDLINE | ID: mdl-38940318

RESUMO

Harvesting solar energy to produce value-added chemicals from carbon dioxide (CO2) presents a promising route for addressing the complexities of sustainable energy systems and environmental issues. In this context, the development of metal-coordinated porous organic polymers (POPs) offers a vital avenue for improving the photocatalytic performance of organic motifs. The current study presents a metal-integrated photocatalytic system (namely, Zn@BP-POP) developed via a one-pot Friedel-Crafts (F.C.) acylation strategy, for solid-gas phase photochemical CO2 reduction to CO (CO2RR). The postsynthetic incorporation of metal (Zn) active sites on the host polymeric backbone of BP-POP significantly influences the catalytic activity. Notably, Zn@BP-POP demonstrates good photocatalytic performance in the absence of any cocatalyst and photosensitizer yielding CO while impeding the competitive hydrogen evolution reaction (HER) from water. The experimental findings collectively propose that the observed catalytic activity and selectivity arise from the synergistic interplay between the singular zinc catalytic centers and the light-harvesting capacity of the highly conjugated polymeric backbone. Further, X-ray absorption spectroscopy (XAS) analysis has significantly highlighted the prominent role played by the ZnN2O4 single sites in the polymeric framework for activating the gaseous CO2 molecules. Further, time-dependent density functional theory (DFT) analysis also reveals the thermodynamic feasibility of CO2RR over HER under optimized reaction conditions. This work cumulatively presents an effective strategy to demonstrate the importance of metal-active sites and effectively establish their structure-activity relationship during photocatalysis.

16.
Toxicol Appl Pharmacol ; 267(1): 113-24, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23274516

RESUMO

Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53 status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Pirazóis/antagonistas & inibidores , Pirimidinas/antagonistas & inibidores , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Neoplasias Cutâneas/enzimologia
17.
Biomedicines ; 11(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760971

RESUMO

Colorectal cancer (CRC) is the third most prevalent human cancer globally. 5-Fluorouracil (5-FU)-based systemic chemotherapy is the primary strategy for advanced CRC treatment, yet is limited by poor response rate. Deregulated activation of signal transducer and activator of transcription 3 (STAT3) is fundamental to driving CRC malignant transformation and a poor prognostic marker for CRC, underscoring STAT3 as a promising CRC drug target. Dehydroxyhispolon methyl ether (DHME) is an analog of Hispolon, an anticancer polyphenol abundant in the medicinal mushroom Phellinus linteus. Previously, we have established DHME's cytotoxic effect on human CRC cell lines by eliciting apoptosis through the blockade of WNT/ß-catenin signaling, a preeminent CRC oncogenic pathway. Herein, we unraveled that compared with 5-FU, DHME is a more potent killer of CRC cells while being much less toxic to normal colon epithelial cells. DHME suppressed both constitutive and interleukin 6 (IL-6)-induced STAT3 activation represented by tyrosine 705 phosphorylation of STAT3 (p-STAT3 (Y705)); notably, DHME-induced CRC apoptosis and clonogenicity limitation were abrogated by ectopic expression of STAT3-C, a dominant-active STAT3 mutant. Additionally, we proved that BCL-2 downregulation caused by DHME-mediated STAT3 blockage is responsible for DHME-induced CRC cell apoptosis. Lastly, DHME inhibited SRC activation, and v-src overexpression restored p-STAT3 (Y705) levels along with lowering the levels of apoptosis in DHME-treated CRC cells. We conclude DHME provokes CRC cell apoptosis by blocking the SRC/STAT3/BCL-2 axis besides thwarting WNT/ß-catenin signaling. The notion that DHME targets two fundamental CRC signaling pathways underpins the potential of DHME as a CRC chemotherapy agent.

18.
ACS Nano ; 17(5): 4261-4278, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706095

RESUMO

Triple-negative breast cancer (TNBC) is considered more aggressive with a poorer prognosis than other breast cancer subtypes. Through systemic bioinformatic analyses, we established the ferroptosis potential index (FPI) based on the expression profile of ferroptosis regulatory genes and found that TNBC has a higher FPI than non-TNBC in human BC cell lines and tumor tissues. To exploit this finding for potential patient stratification, we developed biologically amenable phototheranostic iron pyrite FeS2 nanocrystals (NCs) that efficiently harness near-infrared (NIR) light, as in photovoltaics, for multispectral optoacoustic tomography (MSOT) and photothermal ablation with a high photothermal conversion efficiency (PCE) of 63.1%. Upon NIR irradiation that thermodynamically enhances Fenton reactions, dual death pathways of apoptosis and ferroptosis are simultaneously triggered in TNBC cells, comprehensively limiting primary and metastatic TNBC by regulating p53, FoxO, and HIF-1 signaling pathways and attenuating a series of metabolic processes, including glutathione and amino acids. As a unitary phototheranostic agent with a safe toxicological profile, the nanocrystal represents an effective way to circumvent the lack of therapeutic targets and the propensity of multisite metastatic progression in TNBC in a streamlined workflow of cancer management with an integrated image-guided intervention.


Assuntos
Nanopartículas , Fármacos Fotossensibilizantes , Terapia Fototérmica , Neoplasias de Mama Triplo Negativas , Humanos , Morte Celular , Linhagem Celular Tumoral , Ferro/administração & dosagem , Ferro/uso terapêutico , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/radioterapia , Feminino , Raios Infravermelhos/uso terapêutico , Terapia Fototérmica/métodos , Sulfetos/administração & dosagem , Sulfetos/uso terapêutico , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação
19.
ACS Appl Mater Interfaces ; 15(17): 21027-21039, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083336

RESUMO

In recent times, a self-complementary balanced characteristic feature with the combination of both covalent bonds (structural stability) and open metal sites (single-site catalysis) introduced an advanced emerging functional nanoarchitecture termed metalated porous organic polymers (M-POPs). However, the development of M-POPs in view of the current interest in catalysis has been realized still in its infancy and remains a challenge for the years to come. In this work, we built benzothiazole-linked Fe-metalated porous organic polymer (Fc-Bz-POP) using ferrocene dicarboxaldehyde (FDC), 1,3,5-tris(4-aminophenyl) benzene (APB), and elemental sulfur (S8) via a template-free, multicomponent, cost-effective one-pot synthetic approach. This Fc-Bz-POP is endowed with unique features including an extended network unit, isolated active sites, and catalytic pocket with a possible local structure, in which convergent binding sites are positioned in such a way that substrate molecules can be held in close proximity. Prospective catalytic application of this Fc-Bz-POP has been explored in executing catalytic allylic "C-H" bond functionalization of cyclohexene (CHX) in water at room temperature. Catalytic screening results identified that a superior performance with a CHX conversion of 95% and a 2-cyclohexene-1-ol selectivity (COL) of 80.8% at 4 h and 25 °C temperature has been achieved over Fc-Bz-POP, thereby addressing previous shortcomings of the other conventional catalytic systems. Comprehensive characterization understanding with the aid of synchrotron-based extended X-ray absorption fine structure (EXAFS) analysis manifested that the Fe atom with an oxidation state of +2 in our Fc-Bz-POP catalytic system encompasses a sandwich structural environment with the two symmetrical eclipsed cyclopentadienyl (Cp) rings, featuring nearest-neighbor (NN) Fe-C (≈2.05 Å) intramolecular bonds, as validated by the Fe L3-edge EXAFS fitting result. Furthermore, in situ attenuated total reflection-infrared spectroscopy (ATR-IR) analysis data for liquid-phase oxidation of cyclohexene allow for the formulation of a molecular-level reaction mechanistic pathway with the involvement of specific reaction intermediates, which is initiated by the radical functionalization of the allyl hydrogen. A deep insight investigation from density functional theory (DFT) calculations unambiguously revealed that the dominant pathway from cyclohexene to 2-cyclohexene-1-ol is initiated by an allyl-H functionalization step accompanied by the formation of 2-cyclohexene-1-hydroperoxide species as the key reaction intermediate. Electronic properties obtained from DFT simulations via the charge density difference plot, Bader charge, and density of state (DOS) demonstrate the importance of the organic polymer frame structure in altering the electronic properties of the Fe site in Fc-Bz-POP, resulting in its high activity. Our contribution has great implications for the precise design of metalated porous organic polymer-based robust catalysts, which will open a new avenue to get a clear image of surface catalysis.

20.
Biomedicines ; 11(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37893115

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with few treatment options. A promising TNBC treatment approach is targeting the oncogenic signaling pathways pivotal to TNBC initiation and progression. Deregulated activation of signal transducer and activator of transcription 3 (STAT3) is fundamental to driving TNBC malignant transformation, highlighting STAT3 as a promising TNBC therapeutic target. Methoxyhispolon Methyl Ether (MHME) is an analog of Hispolon, an anti-cancer polyphenol found in the medicinal mushroom Phellinus linteus. Still, MHME's anti-cancer effects and mechanisms remain unknown. Herein, we present the first report about MHME's anti-TNBC effect and its action mechanism. We first revealed that MHME is proapoptotic and cytotoxic against human TNBC cell lines HS578T, MDA-MB-231, and MDA-MB-463 and displayed a more potent cytotoxicity than Hispolon's. Mechanistically, MHME suppressed both constitutive and interleukin 6 (IL-6)-induced activation of STAT3 represented by the extent of tyrosine 705-phosphorylated STAT3 (p-STAT3). Notably, MHME-evoked apoptosis and clonogenicity impairment were abrogated in TNBC cells overexpressing a dominant-active mutant of STAT3 (STAT3-C); supporting the blockade of STAT3 activation is an integral mechanism of MHME's cytotoxic action on TNBC cells. Moreover, MHME downregulated BCL-2 in a STAT3-dependent manner, and TNBC cells overexpressing BCL-2 were refractory to MHME-induced apoptosis, indicating that BCL-2 downregulation is responsible for MHME's proapoptotic effect on TNBC cells. Finally, MHME suppressed SRC activation, while v-src overexpression rescued p-STAT3 levels and downregulated apoptosis in MHME-treated TNBC cells. Collectively, we conclude that MHME provokes TNBC cell apoptosis through the blockade of the SRC/STAT3/BCL-2 pro-survival axis. Our findings suggest the potential of applying MHME as a TNBC chemotherapy agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA