Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Environ Manage ; 318: 115614, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35779296

RESUMO

Since the 24-hr PM2.5 (particle aerodynamic diameter less than 2.5 µm) concentration standard was regulated in Taiwan in 2012, the PM2.5 concentration has been decreasing year by year, but the ozone (O3) concentration remains almost the same. In particular, the daily maximum 8-hr average O3 (MDA8 O3) concentration frequently exceeds the standard. The goal of this study is to find a solution for reducing PM2.5 and O3 simultaneously by numerical modeling. After the Volatile Organic Compounds (VOCS)-limited and nitrogen oxides (NOX)-limited areas were defined in Taiwan, then, in total, 50 scenarios are simulated in this study. In terms of the average in Taiwan, the effect of VOCS emission reduction is better than that of NOX on the decrease in PM2.5 concentration, when the same reduction proportion (20%, 40%) is implemented. While the effect of further NOX emission reduction (60%) will exceed that of VOCS. The decrease in PM2.5 is proportional to the reduction in precursor emissions such as NOX, VOCS, sulfur dioxides (SO2), and ammonia (NH3). The lower reduction of NOX emission for whole Taiwan caused O3 increases on average but higher reduction can ease the increase, which suggests the implement of NOX emission reductions must be cautious. When comparing administrative jurisdictions in terms of grids, districts/towns, and cities/counties, it was found that controlling NOX and VOCS at a finer spatial resolution of control units did not benefit the decrease in PM2.5 but did benefit the decrease in O3. The enhanced O3 control strategies obviously cause a higher decrease of O3 throughout Taiwan due to NOX and VOCS emission changes when they are implemented in the right places. Finally, three sets of short-term and long-term goals of controlling PM2.5 and O3 simultaneously are drawn from the comprehensive rankings for all simulated scenarios, depending on whether PM2.5 or O3 control is more urgent. In principle, the short-term scenarios could be ordinary or enhanced version of O3 decrease with lower NOX/VOCS emissions, while the long-term scenario is enhanced version of O3 decrease plus high emission reductions for all precursors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , China , Monitoramento Ambiental , Ozônio/análise , Material Particulado/análise , Taiwan , Compostos Orgânicos Voláteis/análise
2.
J Sep Sci ; 39(8): 1489-99, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26924196

RESUMO

An automated gas chromatographic system aimed at performing unattended measurements of ambient volatile organic compounds was configured and tested. By exploiting various off-the-shelf components, the thermal desorption unit was easily assembled and can be connected with any existing commercial gas chromatograph in the laboratory to minimize cost. The performance of the complete thermal desorption gas chromatographic system was assessed by analyzing a standard mixture containing 56 target nonmethane hydrocarbons from C2 -C12 at sub-ppb levels. Particular attention was given to the enrichment efficiency of the C2 compounds, such as ethane (b.p. = -88.6°C) and ethylene (b.p. = -104.2°C), due to their extremely high volatilities. Quality assurance was performed in terms of the linearity, precision and limits of detection of the target compounds. To further validate the system, field measurements of target compounds in ambient air were compared with those of a commercial total hydrocarbon analyzer and a carbon monoxide analyzer. Highly coherent results from the three instruments were observed during a two-month period of synchronized measurements. Moreover, the phenomenon of opposite diurnal variations between the biogenic isoprene and anthropogenic species was exploited to help support the field applicability of the thermal desorption gas chromatographic method.

3.
Sci Total Environ ; 930: 172732, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38663609

RESUMO

East Asian continental outflows with PM2.5, O3, and other species may determine the baseline conditions and affect the air quality in downwind areas via long-range transport (LRT). To gain insight into the impact and spatiotemporal characteristics of airborne pollutants in East Asian continental outflows, a versatile multicopter drone sounding platform was used to simultaneously observe PM2.5, O3, CO2, and meteorological variables (temperature, specific humidity, pressure, and wind vector) above the northern tip of Taiwan, Cape Fuiguei, which often encounters continental outflows during winter monsoon periods. By coordinating hourly high-spatial-resolution profiles provided by drone soundings, WRF/CMAQ model air quality predictions, HYSPLIT-simulated backward trajectories, and MERRA-2 reanalysis data, we analyzed two prominent phenomena of airborne pollutants in continental outflows to better understand their physical/chemical characteristics. First, we found that pollutants were well mixed within a sounding height of 500 m when continental outflows passed through and completely enveloped Cape Fuiguei. Eddies induced by significant fluctuations in wind speeds coupled with minimal temperature inversion and LRT facilitated vertical mixing, possibly resulting in high homogeneity of pollutants within the outflow layer. Second, the drone soundings indicated exceptionally high O3 concentrations (70-100 ppbv) but relatively low concentrations of PM2.5 (10-20 µg/m3), CO2 (420-425 ppmv), and VOCs in some air masses. The low levels of PM2.5, CO2, and VOCs ruled out photochemistry as the cause of the formation of high-level O3. Further coordination of spatiotemporal data with air mass trajectories and O3 cross sections provided by MERRA-2 suggested that the high O3 concentrations could be attributed to stratospheric intrusion and advection via continental outflows. High-level O3 concentrations persisted in the lower troposphere, even reaching the surface, suggesting that stratospheric intrusion O3 may be involved in the rising trend in O3 concentrations in parts of East Asia in recent years in addition to surface photochemical factors.

4.
Sci Total Environ ; 893: 164709, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301392

RESUMO

The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techniques. In this study, we use a multicopter unmanned aerial vehicle (UAV) sounding technique to study the influences of the aerial plumes of the world's fourth-largest coal-fired power plant on the atmospheric physical/chemical conditions and air quality. A set of species, including 106 volatile organic compounds (VOCs), CO, CO2, CH4, PM2.5, and O3, and meteorological variables of temperature (T), specific humidity (SH), and wind data, are collected by the UAV sounding technique. The results reveal that the large-scale plumes of the coal-fired power plant cause local temperature inversion and humidity changes, and even affect the dispersion of pollutants below. The chemical compositions of coal-fired power plant plumes are significantly different from those of another ubiquitous vehicular source. High fractions of ethane, ethene, and benzene and low fractions of n-butane and isopentane found in plumes could serve as the key features to help distinguish the influences of coal-fired power plant plumes from other pollution sources in a particular area. By taking the ratios of pollutants (e.g., PM2.5, CO, CH4, and VOCs) to CO2 in plumes and the CO2 emission amounts of the power plant into calculation, we enable the easy quantification of the specific pollutant emissions released from power plant plumes to the atmosphere. In summary, observation by using drone soundings dissecting the aerial plumes provides a new methodology that allows aerial plumes to be readily detected and characterized. Furthermore, the influences of the plumes on the atmospheric physical/chemical conditions and air quality can be assessed rather straightforwardly, which was not easily achievable in the past.

5.
Sci Total Environ ; 887: 163919, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37164070

RESUMO

Much attention has been found to the long-range transport (LRT) of air pollutants and their adverse effects on downwind air qualities resulting from the Chinese haze, which frequently occurs in association with winter monsoon. This study integrates ground-based measurements, unmanned aerial vehicles (UAVs), and model simulations to characterize the meteorological, chemical, and particulate matter (PM) properties comprehensively for the events that were LRT or local pollution (LP) dominated in northern Taiwan during the wintertime of 2017. During the two types of episodes, various approaches were made to investigate the vertical mixing conditions and PM properties with UAV flights. A confined and PM accumulated feature near ground level with a temperature inversion was found during the LP event. In contrast, a vertically homogeneous atmospheric structure with strong winds was suggested during the LRT event. Independent measurements of criteria air pollutants, meteorological variables, volatile organic compounds (VOCs), and micropulse lidar (MPL) made at the ground level were closely supported by the vertical measurements. When synchronizing all these observational and numerical tools in a three-dimensional manner, the characterization of air masses and possible origins of pollution, such as LP vs. LRT, has now become more versatile and capable of gaining a complete picture of atmospheric conditions that define air quality.

6.
Environ Sci Technol ; 46(18): 9846-53, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22486583

RESUMO

Ambient aerosol samples were collected at an urban site and an upwind rural site of Beijing during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. Contributions of primary particles and secondary organic aerosols (SOA) were estimated by chemical mass balance (CMB) modeling and tracer-yield method. The apportioned primary and secondary sources explain 73.8% ± 9.7% and 79.6% ± 10.1% of the measured OC at the urban and rural sites, respectively. Secondary organic carbon (SOC) contributes to 32.5 ± 15.9% of the organic carbon (OC) at the urban site, with 17.4 ± 7.6% from toluene, 9.7 ± 5.4% from isoprene, 5.1 ± 2.0% from α-pinene, and 2.3 ± 1.7% from ß-caryophyllene. At the rural site, the secondary sources are responsible for 38.4 ± 14.4% of the OC, with the contributions of 17.3 ± 6.9%, 13.9 ± 9.1%, 5.6 ± 1.9%, and 1.7 ± 1.0% from toluene, isoprene, α-pinene, and ß-caryophyllene, respectively. Compared with other regions in the world, SOA in Beijing is less aged, but the concentrations are much higher; between the sites, SOA is more aged and affected by regional transport at the urban site. The high SOA loading in Beijing is probably attributed to the high regional SOC background (~2 µg m(-3)). The toluene SOC concentration is high and comparable at the two sites, implying that some anthropogenic components, at least toluene SOA, are widespread in Beijing and represents a major factor in affecting the regional air quality. The aerosol gaseous precursor concentrations and temperature correlate well with SOA, both affecting SOA formation. The significant SOA enhancement with increasing water uptake and acidification indicates that the aqueous-phase reactions are largely responsible SOA formation in Beijing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Poluição do Ar/análise , Monoterpenos Bicíclicos , Butadienos/química , Carbono/química , China , Hemiterpenos/química , Modelos Moleculares , Monoterpenos/química , Tamanho da Partícula , Pentanos/química , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Tolueno/química
7.
Chemosphere ; 304: 135304, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35697108

RESUMO

This study aimed to develop a technique to chemically characterize odor issues in neighborhoods of designated industrial zones with pronounced emissions of volatile organic compounds (VOCs). Due to the elusive nature of odor plumes, speedy detection with sufficient sensitivity is required to capture the plumes. In this demonstration, proton-transfer-reaction mass spectrometry (PTR-MS) was used as the front-line detection tool in an industrial zone to guide sampling canisters for in-laboratory analysis of 106 VOCs by gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID). The fast but less accurate PTR-MS coupled with the slow but accurate GC-MS/FID method effectively eliminates the drawbacks of each instrument and fortifies the strength of both when combined. A 10-day PTR-MS field screening period was conducted to determine suitable trigger VOC species with exceedingly high mixing ratios that were likely the culprits of foul odors. Twenty canister samples were then collected, triggered by m/z 43, 61 (ethyl acetate, fragments, EA), m/z 73 (methyl ethyl ketone, MEK), or m/z 88 (morpholine) in all cases. Internal consistency was confirmed by the high correlation of critical species in the PTR-MS and trigger samples. Several long-lived halocarbons were exploited as the intrinsic internal reference for quality assurance. Oxygenated VOCs (OVOCs) accounted for 15%-75% of the total VOC mixing ratios in the triggered samples. However, EA and MEK, the most prominent OVOC species, did not appear to have common sources with morpholine, which presented with PTR-MS peaks incoherent with the other OVOCs. Nevertheless, these distinctive OVOC plumes were consistent with the multiple types of odor reported by the local residents. In contrast with the triggered sampling, random samples in the same industrial zone and roadside samples in a major metropolitan area were collected. The pronounced OVOC content in the triggered samples highlighted the advantage over random grab sampling to address odor issues.


Assuntos
Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Morfolinas , Odorantes/análise , Prótons , Compostos Orgânicos Voláteis/análise
8.
Chemosphere ; 297: 134165, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35245587

RESUMO

East Asian continental outflows containing with pollutants may deteriorate air quality in the downwind region via long-range transport (LRT). In particular, cold fronts with high wind speeds generally promote the LRT of air pollutants to further downwind areas, including Taiwan. To gain an insightful understanding of the characteristics and vertical homogeneity of trace gases in East Asian continental outflows, as well as their relation with atmospheric meteorological conditions, whole air samples were collected above a cape at the northern tip of the island of Taiwan during frontal passages. Aerial samples were collected at multiple altitudes from the surface to a maximum height of 700 m with a multicopter sounding platform carrying a robotic whole air sampling device. Simultaneously, aerial meteorological variables of temperature and wind vector from near the surface to a maximum height of 1000 m were also measured during the whole air sampling periods. An array of 106 volatile organic compounds (VOCs) as well as CO, CO2, and CH4 were analyzed to characterize the air composition and vertical homogeneity of trace gases. The results revealed rather homogeneous vertical distributions of most VOCs, CO, CO2, and CH4 in the frontal passages, indicating well-mixed conditions of trace gases in the East Asian continental outflows. The strong wind shear and minimal temperature inversion associated with the frontal passage likely induced turbulence and increased vertical mixing. Furthermore, higher levels of species characteristic of the East Asian continent were observed from the surface up to hundreds of meters above the cape, revealing a strong inflow of polluted air masses from the East Asian continent brought by cold frontal passages.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Dióxido de Carbono , Monitoramento Ambiental/métodos , Gases , Compostos Orgânicos Voláteis/análise
9.
J Nanosci Nanotechnol ; 11(12): 10654-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22408967

RESUMO

Performance of phase-change materials based on Ga-Te-Sb was found getting better with decreasing Te content in our earlier studies. We concerned much properties of Te-free, Sb-rich binary Ga-Sb, which has been known to possess extremely fast crystallization behavior. Non-isothermal and isothermal crystallization kinetics of amorphous Sb-rich Ga-Sb films were explored by temperature dependent electrical resistance measurements. The crystallization temperature (183 to 261 degrees C) increases with decreasing Sb content (91 to 77 at%). The activation energy and rate-factor vary with Sb contents and reach the maximum at Ga19Sb81. The kinetic exponent is smaller than 1.5 at Sb < 85 at% denoting that the mechanism is one-dimensional crystal-growth from nuclei. The temperature corresponding to 10-year data-retention, evaluated from films, is 180 degrees C (Ga19Sb81) and 137 degrees C (Ga13Sb87), respectively. We verified memory performance using test-devices made of Ga16Sb84 working at voltages with 100 ns pulse-width.

10.
World J Clin Cases ; 9(5): 1210-1214, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33644186

RESUMO

BACKGROUND: Vibrio pararhaemolyticus (V. parahaemolyticus), a pathogen that commonly causes gastroenteritis, could potentially lead to a pandemic in Asia. Its pathogenesis and molecular mechanisms vary, and the severity of illness can be diverse, ranging from mild gastroenteritis, requiring only supportive care, to sepsis. CASE SUMMARY: We outline a case of a 71-year-old female who experienced an acute onset of severe abdominal tenderness after two days of vomiting and diarrhea prior to her emergency department visit. A small bowel perforation was diagnosed using computed tomography. The ascites cultured revealed infection due to V. parahaemolyticus. CONCLUSION: Our case is the first reported case of V. parahaemolyticus-induced gastroenteritis resulting in small bowel perforation.

11.
Environ Sci Technol ; 44(18): 7017-22, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20707413

RESUMO

We analyze the observations of near-surface peroxy acetyl nitrate (PAN) and its precursors in Beijing, China in August of 2007. The levels of PAN are remarkably high (up to 14 ppbv), surpassing those measured over other urban regions in recent years. Analyses employing a 1-D version of a chemical transport model (Regional chEmical and trAnsport Model, REAM) indicate that aromatic non-methane hydrocarbons (NMHCs) are the dominant (55-75%) PAN source. The major oxidation product of aromatics that produces acetyl peroxy radicals is methylglyoxal (MGLY). PAN and O(3) in the observations are correlated at daytime; aromatic NMHCs appear to play an important role in O(3) photochemistry. Previous NMHC measurements indicate the presence of reactive aromatics at high levels over broad polluted regions of China. Aromatics are often ignored in global and (to a lesser degree) regional 3D photochemical transport models; their emissions over China as well as photochemistry are quite uncertain. Our findings suggest that critical assessments of aromatics emissions and chemistry (such as the yields of MGLY) are necessary to understand and assess ozone photochemistry and regional pollution export in China.


Assuntos
Hidrocarbonetos Aromáticos/análise , Ácido Peracético/análogos & derivados , China , Modelos Químicos , Movimento (Física) , Ácido Peracético/análise , Fatores de Tempo
12.
Chemosphere ; 254: 126867, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957282

RESUMO

The unique maneuverability, ease of deployment, simplicity in logistics, and relatively low costs of multicopters render them effective vehicles for low atmospheric research. While many efforts have contributed to the fundamental success of atmospheric applications of multicopters in the past, several challenges remain, including limited measurable variables, possible response-delay in real-time observations, insufficient measurement accuracy, endurance of harsh conditions and tolerance towards interferences. To address these challenges and further fortify the applicability in diversified research disciplines, this study developed an optimized multicopter UAV sounding technique (MUST). The MUST serves as an integrated platform by combining self-developed algorithms, optimized working environments for sensors/monitors, and retrofitted sampling devices to probe a comprehensive set of atmospheric variables. These variables of interest include meteorological parameters (temperature, relative humidity, pressure, wind direction and speed), the chemical composition (speciated VOCs, CO, CO2, CH4, CO2 isotopologues, O3, PM2.5, and black carbon), and the radiation flux, as well as visible and thermal images. The aim of this study is to achieve the following objectives: 1. to easily probe a comprehensive set of near-surface atmospheric variables; 2. to improve data quality by correcting for sensors' delay in real-time observations and minimizing environmental interferences; and 3. to enhance the versatility and applicability of aerial measurements by incorporating necessary hardware and software. Field launching cases from the surface to a maximum height of 1000 m were conducted to validate the robustness of the integrated MUST platform with sufficient speed, accuracy and resolution for the target variables.


Assuntos
Atmosfera/química , Monitoramento Ambiental/métodos , Conceitos Meteorológicos , Meteorologia , Vento
13.
Chemosphere ; 241: 124957, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31590021

RESUMO

Instead of manual sampling in a random way near a source area, this study used trigger sampling guided by an analyzer at a fixed site near a refinery plant to obtain the chemical composition of volatile organic compounds (VOCs) representative of the source. The analyzer was built in-house to measure total VOC (TVOC) levels by subtracting methane from total combustible organic compounds (TOC) with flame ionization detection. The analyzer with minute resolution provided instantaneous measurements of TVOCs to trigger canister sampling at the moments of VOC plumes in a source area. The chemical composition of the 13 trigger samples were compared with the other non-trigger samples randomly collected either within the refinery or on an urban street. All samples were analyzed by gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) for detailed speciation. High agreement in total VOC abundance between the analyzer and GC-MS/FID indicates internal consistency of the two techniques and the robustness of the TVOC analyzer to guide sampling of VOC plumes. The trigger samples showing very high consistency in the overall composition imply that sampling at the right moments of plume arrivals can facilitate characterization of the source profiles, which can hardly be achieved by random sampling. The coupling of the fast-and-slow analytical techniques to guide sampling is proven to be an effective means to probe source characteristics.


Assuntos
Monitoramento Ambiental/métodos , Ionização de Chama/métodos , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Cromatografia Gasosa-Espectrometria de Massas , Indústrias
14.
J Chromatogr A ; 1201(2): 134-40, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18405905

RESUMO

An automated sampling and enrichment apparatus coupled with a gas chromatography/mass spectrometry (GC/MS) technique was constructed for the analysis of ambient volatile organic compounds (VOCs). A sorbent trap was built within the system to perform on-line enrichment and thermal desorption of VOCs onto GC/MS. In order to improve analytical precision, calibration accuracy, and to safe-guard the long-term stability of this system, a mechanism to allow on-line internal standard (I.S.) addition to the air sample stream was configured within the sampling and enrichment apparatus. A sub-ppm (v/v) level standard gas mixture containing 1,4-fluorobenzene, chloropentafluorobenzene, 1-bromo-4-fluorobenzene was prepared from their pure forms. A minute amount of this I.S. gas was volumetrically mixed into the sample stream at the time of on-line enrichment of the air sample to compensate for measurement uncertainties. To assess the performance of this VOC GC/MS system, a gas mixture containing numerous VOCs at sub-ppb (v/v) level served as the ambient air sample. Various internal standard methods based on total ion count (TIC) and selective ion monitoring (SIM) modes were attempted to assess the improvement in analytical precision and accuracy. Precision was improved from 7-8% RSD without I.S. to 2-3% with I.S. for the 14 target VOCs. Uncertainties in the calibration curves were also improved with the adoption of I.S. by reducing the relative standard deviation of the slope (Sm%) by an average a factor of 4, and intercept (Sb%) by a factor of 2 for the 14 target VOCs.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Calibragem , Compostos Orgânicos/isolamento & purificação
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 041408, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18999428

RESUMO

We study the packing of colloidal microspheres mixed with polymers in oil-in-water emulsion droplets by evaporation. The addition of polymers produces non-unique configurations of final clusters when the number of particles N inside the droplet is larger than 4. The cluster configurations are classified into three categories based on symmetry. Stablized colloidal clusters of spherical packings are observed. Our observations on packing process suggest the mechanisms which cause different and nonunique structures. The osmotic pressure and the interparticle interaction due to polymers changes the force balance between microspheres and result in different structures.

16.
Sci Total Environ ; 399(1-3): 41-9, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18479737

RESUMO

This study describes continuous monitoring of the volatile organic air pollutants, acetone and toluene, in Hsinchu Science Park (HSP) during an occurrence of inclement weather, i.e., a typhoon. Using a lab-designed sampling system coupled with a continuous automated GC-MS analysis system, a total of 53 polar and nonpolar compounds were identified and quantified. The concentration of polar compounds dropped sharply from 41.4 ppbv before the typhoon to the stage of no detection during the storm, but rose again after the typhoon. The amount of nonpolar compounds remained unaffected during the storm. The polar compounds were more affected by both the rainfall and wind than were the nonpolar compounds. The severity of air pollution strongly correlates with the concentration of acetone released into the atmosphere by a wastewater treatment facility. The system used in this study has been proved reliable while working in inclement weather condition; in addition, the results can probably be applied in the monitoring of the environment during the typhoon season in high-tech research areas.


Assuntos
Acetona/análise , Poluentes Atmosféricos/análise , Ar/análise , Desastres , Monitoramento Ambiental , Tolueno/análise , Eliminação de Resíduos Líquidos , Movimentos do Ar , Cromatografia Gasosa-Espectrometria de Massas , Medição de Risco , Estações do Ano , Taiwan , Volatilização , Tempo (Meteorologia)
17.
Environ Pollut ; 243(Pt B): 1360-1367, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30273862

RESUMO

This study developed a lightweight air composition measuring equipment (ACME) mounted in unmanned aerial vehicles (UAVs) to measure the vertical distribution characteristics of PM2.5 chemical species in the micro-scale urban environment for the first time. 212 samples collected from 0 to 350 m above ground level were analyzed for water-soluble ions. The concentrations of most ions on the above ground level were higher than that on the ground surface during the sampling period. The measurements of the total ion concentrations were approximately 54 to 26% of the PM2.5 mass concentrations on the ground surface. The concentrations of NH4+ and NO3- decreased with increases in the height from the ground, which may be related to the influence of the vehicle emissions and human activities. NO2- and SO42- both had a peak concentration on the higher vertical altitude at night in the sea-land wind system. In the southern wind system, the emissions of sea salts, dust, and stationary pollution, might be transported by the regional prevailing airflow from the southern coastal area, were the major pollutant sources above the boundary layer. The vertical distribution of ionic concentrations and wind field provided information concerning changes in pollutant transport and source regions that affect the local air quality. The ACME mounted in UAVs is the feasible and convenient method to fast understand the vertical distributions of aerosol chemical species. It provides important information about the accumulation and diffusion effects by the boundary layer variation to aerosol characteristics, which is difficulty observed from the conventional ground-based measurements. In future, this technology is the useful application for investigating the pollutant species emitted from the smokestack and the sudden pollution accident.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição do Ar/análise , Poeira , Humanos , Íons/análise , Material Particulado/análise , Emissões de Veículos/análise
18.
J Chromatogr A ; 1163(1-2): 298-303, 2007 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-17651745

RESUMO

A flow controlled adjustable splitter was configured from a Deans switch and employed in an automated dual column gas chromatographic (GC) system for analyzing mono-aromatic compounds. Volatile organic compounds (VOCs), thermally desorbed from the sorbent trap, were split by the adjustable splitter onto two columns of different phases for separation and then detection by flame ionization detection (FID). Unlike regular splitters in which the split ratio is passively determined by the diameter and/or length of the connecting columns or tubing, the split ratio in our adjustable splitter is controlled by the auxiliary flow in the Deans switch. The auxiliary flow serves as a gas plug on either side of the column for decreasing the sample flow in one transfer line, but increasing the flow in the other. By adjusting the auxiliary flow and therefore the size of the gas plug, the split ratio can be easily varied and favorable to the side of no auxiliary gas. As an illustration, two columns, DB-1 and Cyclodex-B, were employed in this study for separating benzene, toluene, ethylbenzene, xylenes, denoted as BTEX, in particular the structural isomers of o-, m-, p-xylenes. This configuration demonstrates that BTEX cannot be fully separated with either column, but can be deconvoluted by simple algebra if dual columns are used with a splitter. The applicability of the proposed concept was tested by analyzing a gas standard containing BTEX at different split ratios and with various sample sizes, all leading to a constant ratio of m-xylene versus p-xylene.


Assuntos
Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/métodos , Benzeno/análise , Benzeno/química , Benzeno/isolamento & purificação , Derivados de Benzeno/análise , Derivados de Benzeno/química , Derivados de Benzeno/isolamento & purificação , Reprodutibilidade dos Testes , Tolueno/análise , Tolueno/química , Tolueno/isolamento & purificação , Xilenos/análise , Xilenos/química , Xilenos/isolamento & purificação
19.
Chemosphere ; 144: 484-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26386435

RESUMO

To advance the capabilities of probing chemical composition aloft, we designed a lightweight remote-controlled whole air sampling component (WASC) and integrated it into a multicopter drone with agile maneuverability to perform aerial whole air sampling. A field mission hovering over an exhaust shaft of a roadway tunnel to collect air samples was performed to demonstrate the applicability of the multicopter-carried WASC apparatus. Ten aerial air samples surrounding the shaft vent were collected by the multicopter-carried WASC. Additional five samples were collected manually inside the shaft for comparison. These samples were then analyzed in the laboratory for the chemical composition of 109 volatile organic compounds (VOCs), CH4, CO, CO2, or CO2 isotopologues. Most of the VOCs in the upwind samples (the least affected by shaft exhaust) were low in concentrations (5.9 ppbv for total 109 VOCs), posting a strong contrast to those in the shaft exhaust (235.8 ppbv for total 109 VOCs). By comparing the aerial samples with the in-shaft samples for chemical compositions, the influence of the shaft exhaust on the surrounding natural air was estimated. Through the aerial measurements, three major advantages of the multicopter-carried WASC were demonstrated: 1. The highly maneuverable multicopter-carried WASC can be readily deployed for three-dimensional environmental studies at a local scale (0-1.5 km); 2. Aerial sampling with superior sample integrity and preservation conditions can now be performed with ease; and 3. Data with spatial resolution for a large array of gaseous species with high precision can be easily obtained.


Assuntos
Poluentes Atmosféricos/análise , Meio Ambiente , Monitoramento Ambiental/instrumentação , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
20.
J Chromatogr A ; 1087(1-2): 150-7, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16130708

RESUMO

An automated gas chromatographic system aiming at performing unattended analysis of volatile organic compounds (VOCs) was developed in laboratory. To encompass VOCs of a wide range of volatility, two different designs of enrichment and separation methods were adopted and compared with performance in analyzing ozone precursors of C3-C12. In the dual-trap dual-column design, lower boiling species (C3-C6) are enriched and separated by one set of trap and column (porous layer open tubular (PLOT)), whereas the enrichment and separation for the higher boiling species (C6-C12) are performed by the other set (wall-coated open tubular (WCOT)). Undesired peaks also inevitably appear on both chromatograms often causing annoyances. To reduce complexity of both the apparatus and the resulting chromatograms, the heart-cut technique was adopted as a base for developing a system, which only uses one trap and one flame ionization detector for constructing two-dimensional GC with PLOT and DB-1. Methods were developed to allow the auxiliary flow pressure in the heart-cut device to be programmed to create dual effects, which not only can perform regular heart-cut actions but can also temporally hold up species in the precolumn for prescribed time intervals. Because it is characteristic for PLOT chromatograms to have reproducible blank retention time windows, segments of a DB-1 trace are produced by the auxiliary flow program aligning perfectly in time with the gaps of the PLOT trace. Subsequently, the two column flows are merged and channeled into single flame ionization detector to produce a very condensed "tailored" chromatogram which is equivalent to overlaying a PLOT and a DB-1 chromatogram on top of each other, except that no peaks are overlapped. This innovative "peak tailoring" concept based on the heart-cut technique is simple in design, easy to build, and extremely rugged for long-term continuous operation as fewer moving parts are involved, which is beneficial for deploying in remote monitoring stations.


Assuntos
Poluentes Atmosféricos/análise , Cromatografia Gasosa/métodos , Compostos Orgânicos/análise , Atmosfera , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA