Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 22(13-14): e2100156, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997954

RESUMO

Complex mixtures of bioactive ingredients in plant essential oils present complex chemistries which involve different modes of action. An increasing body of scientific reports has recently focused on the acaricidal activities of plant essential oils attributed to their monoterpene components, but information about their underlying molecular mechanism of action is scarce. Here, after the chemical analysis of lemongrass oil, a proteomic analysis of the ovary, salivary gland, and midgut of Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil was performed via data-independent acquisition mass spectrometry (DIA-MS) technology to further elucidate the molecular mechanisms involved. Pathway analysis reveals the activation of metabolic pathways mediated by oxidoreductases and transferases. Furthermore, the upregulation of various calcium-associated proteins and the upregulation of cytochrome c1, cytochrome c oxidase polypeptide IV, and programmed cell death protein 6-like isoform X1 suggest a cytotoxic mode of action via the formation of reactive oxygen species (ROS), mitochondrial Ca2+ overload, mitochondrial uncoupling, and depolarization, and ATP depletion leading to either apoptotic or necrotic death. Morphological alterations observed after the RNAi of a major detoxification enzyme (glutathione S-transferase) merit further investigation. Hence, the cytotoxic mode of action exhibited by C. citratus oil could be vital for the development of eco-friendly acaricide.


Assuntos
Cymbopogon , Óleos Voláteis , Cymbopogon/química , Homeostase , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Proteômica
2.
Exp Parasitol ; 235: 108232, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227683

RESUMO

Babesia is a protozoan that mainly parasitizes mammalian red blood cells. It causes damage to multiple organs of the host, even threatening the life of the host when the infection is severe. This study found that the mouse kidney was injured after Babesia infection, leading to changes such as ischaemia and an abnormal morphology of renal and epithelial cells. Serum tests showed that indices reflecting renal abnormalities (including serum creatinine, uric acid, and bilirubin) appeared to be abnormal. To further explore the molecular mechanism underlying kidney injury and self-healing in infected hosts, we employed a data-independent acquisition (DIA) proteomics method to investigate large-scale B. microti infection-induced changes in protein expression and phosphorylation in mouse kidneys. This study identified and analysed the reasons for the obvious changes in kidney injury-related proteins, repair-related proteins, immune-related proteins, and lipid metabolism-related proteins. The results provide a strong theoretical basis for effective treatments of the kidney disease caused by Babesia infection.


Assuntos
Babesia microti , Babesia , Babesiose , Animais , Rim , Camundongos , Proteínas
3.
PLoS Negl Trop Dis ; 16(8): e0010692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35994434

RESUMO

Haemaphysalis longicornis (Neumann), a tick of public health and veterinary importance, spend the major part of their life cycle off-host, especially the adult host-seeking period. Thus, they have to contend with prolonged starvation. Here, we investigated the underlying molecular mechanism of tick starvation endurance in the salivary glands, midguts, ovaries, and Malpighian tubules of starved H. longicornis ticks using the data-independent acquisition quantitative proteomic approach to study the proteome changes. Essential synthases such as glutamate synthase, citrate synthase, and ATP synthase were up-regulated probably due to increased proteolysis and amino acid catabolism during starvation. The up-regulation of succinate dehydrogenase, ATP synthase, cytochrome c oxidase, and ADP/ATP translocase closely fits with an increased oxidative phosphorylation function during starvation. The differential expression of superoxide dismutase, glutathione reductase, glutathione S-transferase, thioredoxin, and peroxiredoxin indicated fasting-induced oxidative stress. The up-regulation of heat shock proteins could imply the activation of a protective mechanism that checks excessive protein breakdown during starvation stress. The results of this study could provide useful information about the vulnerabilities of ticks that could aid in tick control efforts.


Assuntos
Ixodidae , Carrapatos , Trifosfato de Adenosina/metabolismo , Animais , Ixodidae/química , Estágios do Ciclo de Vida , Proteômica
4.
Front Cell Infect Microbiol ; 11: 769026, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118006

RESUMO

Tick saliva, an essential chemical secretion of the tick salivary gland, is indispensable for tick survival owing to the physiological influence it exerts on the host defence mechanisms via the instrumentality of its cocktail of pharmacologically active molecules (proteins and peptides). Much research about tick salivary proteome has been performed, but how most of the individual salivary proteins are utilized by ticks to facilitate blood acquisition and pathogen transmission is not yet fully understood. In addition, the phosphorylation of some proteins plays a decisive role in their function. However, due to the low phosphorylation level of protein, especially for a small amount of protein, it is more difficult to study phosphorylation. Maybe, for this reason, the scarcity of works on the phosphorylated tick salivary proteomes still abound. Here, we performed a phosphoproteomic analysis of Haemaphysalis longicornis tick saliva via TiO2 enrichment and the most advanced Thermo Fisher Orbitrap Exploris 480 mass spectrometer for identification. A total of 262 phosphorylated tick saliva proteins were identified and were subjected to functional annotation/enrichment analysis. Cellular and metabolic process terms accounted for the largest proportion of the saliva proteins, with the participation of these proteins in vital intracellular and extracellular transport-oriented processes such as vesicle-mediated transport, exocytic process, cell adhesion, and movement of cell/subcellular component. "Endocytosis", "Protein processing in endoplasmic reticulum", and "Purine metabolism" were the most significantly enriched pathways. The knockdown (RNAi) of Tudor domain-containing protein (TCP), actin-depolymerizing factors (ADF), programmed cell death protein (PD), and serine/threonine-protein kinase (SPK) resulted in the dissociation of collagen fibers and the pilosebaceous unit, increased inflammatory infiltrates/granulocytes (possibly heterophiles), and the depletion of the epithelium. Ticks injected with SPK dsRNA engorged normally but with a change in skin colour (possibly an autoimmune reaction) and the failure to produce eggs pointing to a possible role of SPK in reproduction and host immune modulation. Ticks injected with ADF dsRNA failed to acquire blood, underscoring the role of ADF in facilitating tick feeding. The results of this study showed the presence of phosphorylation in tick saliva and highlight the roles of salivary phosphoproteins in facilitating tick feeding.


Assuntos
Ixodidae , Carrapatos , Animais , Ixodidae/genética , Fosfoproteínas/metabolismo , Saliva/química , Proteínas e Peptídeos Salivares/metabolismo , Carrapatos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA