Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Cell Physiol ; 239(5): e31248, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38501506

RESUMO

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-ß)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-ß specifically in cardiac tissues (TGF-ß transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-ß transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-ß transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.


Assuntos
Fibrilação Atrial , Proliferação de Células , Células Endoteliais , Transição Epitelial-Mesenquimal , Flavanonas , Átrios do Coração , Semaforina-3A , Fator de Crescimento Transformador beta , Animais , Humanos , Masculino , Camundongos , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/genética , Fibrilação Atrial/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Flavanonas/farmacologia , Átrios do Coração/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/patologia , Camundongos Transgênicos , Semaforina-3A/metabolismo , Semaforina-3A/genética , Fator de Crescimento Transformador beta/metabolismo
2.
J Transl Med ; 22(1): 77, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243248

RESUMO

BACKGROUND: The sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) depression substantially contributes to diastolic dysfunction in heart failure (HF), suggesting that SERCA2a stimulation may be a mechanism-based HF therapy. Istaroxime is a drug endowed with both a SERCA2a stimulatory activity and a Na+/K+ pump inhibitory activity for acute HF treatment. Its main metabolite PST3093 shows a more favorable therapeutic profile as compared to the parent drug, but it is still unsuitable for chronic usage. Novel PST3093 derivatives have been recently developed for oral (chronic) HF treatment; compound 8 was selected among them and here characterized. METHODS: Effects of compound 8 were evaluated in a context of SERCA2a depression, by using streptozotocin-treated rats, a well-known model of diastolic dysfunction. The impact of SERCA2a stimulation by compound 8 was assessed at the cellular level ad in vivo, following i.v. infusion (acute effects) or oral administration (chronic effects). RESULTS: As expected from SERCA2a stimulation, compound 8 induced SR Ca2+ compartmentalization in STZ myocytes. In-vivo echocardiographic analysis during i.v. infusion and after repeated oral administration of compound 8, detected a significant improvement of diastolic function. Moreover, compound 8 did not affect electrical activity of healthy guinea-pig myocytes, in line with the absence of off-target effects. Finally, compound 8 was well tolerated in mice with no evidence of acute toxicity. CONCLUSIONS: The pharmacological evaluation of compound 8 indicates that it may be a safe and selective drug for a mechanism-based treatment of chronic HF by restoring SERCA2a activity.


Assuntos
Etiocolanolona/análogos & derivados , Insuficiência Cardíaca , Ratos , Camundongos , Animais , Cobaias , Insuficiência Cardíaca/metabolismo , Doença Crônica , Inibidores Enzimáticos , Cardiotônicos/uso terapêutico , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo
3.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396862

RESUMO

Atrial fibrillation (AF), characterized by structural remodeling involving atrial myocardial degradation and fibrosis, is linked with obesity and transforming growth factor beta 1 (TGF-ß1). Aldehyde dehydrogenase 2 (ALDH2) deficiency, highly prevalent in East Asian people, is paradoxically associated with a lower AF risk. This study investigated the impact of ALDH2 deficiency on diet-induced obesity and AF vulnerability in mice, exploring potential compensatory upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1). Wild-type (WT) and ALDH2*2 knock-in (KI) mice were administered a high-fat diet (HFD) for 16 weeks. Despite heightened levels of reactive oxygen species (ROS) post HFD, the ALDH2*2 KI mice did not exhibit a greater propensity for AF compared to the WT controls. The ALDH2*2 KI mice showed equivalent myofibril degradation in cardiomyocytes compared to WT after chronic HFD consumption, indicating suppressed ALDH2 production in the WT mice. Atrial fibrosis did not proportionally increase with TGF-ß1 expression in ALDH2*2 KI mice, suggesting compensatory upregulation of the Nrf2 and HO-1 pathway, attenuating fibrosis. In summary, ALDH2 deficiency did not heighten AF susceptibility in obesity, highlighting Nrf2/HO-1 pathway activation as an adaptive mechanism. Despite limitations, these findings reveal a complex molecular interplay, providing insights into the paradoxical AF-ALDH2 relationship in the setting of obesity.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Fibrilação Atrial , Animais , Camundongos , Aldeído Desidrogenase , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/complicações , Fibrose , Fator 2 Relacionado a NF-E2 , Obesidade/complicações , Obesidade/genética , Fator de Crescimento Transformador beta1/genética
4.
Kidney Int ; 103(4): 702-718, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36646166

RESUMO

In dysfunctional arteriovenous fistulae (AVF) for hemodialysis access, neointimal hyperplasia (NH) is prone to occur in the region exposed to disturbed flow. We hypothesized that disturbed flow contributes to NH in AVF by inducing endothelial mesenchymal transition (EndMT) through activation of the osteopontin/CD44 axis. In rats with aortocaval fistula, a rodent model of AVF, we demonstrated development of EndMT and expression of osteopontin and CD44 specifically in the vicinity of the arteriovenous junction using immunostaining. Duplex scan confirmed this region was exposed to a disturbed flow. A mixed ultrastructural phenotype of endothelium and smooth muscle cells was found in luminal endothelial cells of the arteriovenous junction by electron microscopy ascertaining the presence of EndMT. Endothelial lineage tracing using Cdh5-Cre/ERT2;ROSA26-tdTomato transgenic mice showed that EndMT was involved in NH of AVF since the early stage and that the endothelial-derived cells contributed to 24% of neointimal cells. In human umbilical vein endothelial cells (HUVECs) in culture, osteopontin treatment induced EndMT, which was suppressed by CD44 knockdown. Exposure to low oscillatory wall shear stress using a parallel-plate system induced EndMT in HUVECs, also suppressed by osteopontin or CD44 knockdown. In AVF of CD44 knockout mice, EndMT was mitigated and NH decreased by 35% compared to that in wild-type mice. In dysfunctional AVF of patients with uremia, expressions of osteopontin, CD44, and mesenchymal markers in endothelial cells overlying the neointima was also found by immunostaining. Thus, the osteopontin/CD44 axis regulates disturbed flow-induced EndMT, plays an important role in neointimal hyperplasia of AVF, and may act as a potential therapeutic target to prevent AVF dysfunction.


Assuntos
Neointima , Osteopontina , Animais , Humanos , Camundongos , Ratos , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hiperplasia/patologia , Neointima/patologia , Osteopontina/genética , Diálise Renal/efeitos adversos
5.
J Pharmacol Exp Ther ; 384(1): 231-244, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36153005

RESUMO

Heart failure (HF) therapeutic toolkit would strongly benefit from the availability of ino-lusitropic agents with a favorable pharmacodynamics and safety profile. Istaroxime is a promising agent, which combines Na+/K+ pump inhibition with sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) stimulation; however, it has a very short half-life and extensive metabolism to a molecule named PST3093. The present work aims to investigate whether PST3093 still retains the pharmacodynamic and pharmacokinetic properties of its parent compound. We studied PST3093 for its effects on SERCA2a and Na+/K+ ATPase activities, Ca2+ dynamics in isolated myocytes, and hemodynamic effects in an in vivo rat model of diabetic [streptozotocin (STZ)-induced] cardiomyopathy. Istaroxime infusion in HF patients led to accumulation of PST3093 in the plasma; clearance was substantially slower for PST3093 than for istaroxime. In cardiac rat preparations, PST3093 did not inhibit the Na+/K+ ATPase activity but retained SERCA2a stimulatory activity. In in vivo echocardiographic assessment, PST3093 improved overall cardiac performance and reversed most STZ-induced abnormalities. PST3093 intravenous toxicity was considerably lower than that of istaroxime, and it failed to significantly interact with 50 off-targets. Overall, PST3093 is a "selective" SERCA2a activator, the prototype of a novel pharmacodynamic category with a potential in the ino-lusitropic approach to HF with prevailing diastolic dysfunction. Its pharmacodynamics are peculiar, and its pharmacokinetics are suitable to prolong the cardiac beneficial effect of istaroxime infusion. SIGNIFICANCE STATEMENT: Heart failure (HF) treatment would benefit from the availability of ino-lusitropic agents with favourable profiles. PST3093 is the main metabolite of istaroxime, a promising agent combining Na+/K+ pump inhibition and sarcoplasmic reticulum Ca2+ ATPase2a (SERCA2a) stimulation. PST3093 shows a longer half-life in human circulation compared to istaroxime, selectively activates SERCA2a, and improves cardiac performance in a model of diabetic cardiomyopathy. Overall, PST3093 as a selective SERCA2a activator can be considered the prototype of a novel pharmacodynamic category for HF treatment.


Assuntos
Insuficiência Cardíaca , Coração , Animais , Humanos , Ratos , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Etiocolanolona/farmacologia , Etiocolanolona/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico
6.
J Biomed Sci ; 30(1): 55, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452346

RESUMO

BACKGROUND: Sustained, chronic activation of ß-adrenergic receptor (ß-AR) signaling leads to cardiac arrhythmias, with exchange proteins directly activated by cAMP (Epac1 and Epac2) as key mediators. This study aimed to evaluate whether CD44, a transmembrane receptor mediating various cellular responses, participates in Epac-dependent arrhythmias. METHODS: The heart tissue from CD44 knockout (CD44-/-) mice, cultured HL-1 myocytes and the tissue of human ventricle were used for western blot, co-immunoprecipitaiton and confocal studies. Line-scanning confocal imaging was used for the study of cellular Ca2+ sparks on myocytes. Optical mapping and intra-cardiac pacing were applied for arrhythmia studies on mice's hearts. RESULTS: In mice, isoproterenol, a ß-AR agonist, upregulated CD44 and Epac1 and increased the association between CD44 and Epac1. Isoproterenol upregulated the expression of phospho-CaMKII (p-CaMKII), phospho-ryanodine receptor (p-RyR), and phospho-phospholamban (p-PLN) in mice and cultured myocytes; these effects were attenuated in CD44-/- mice compared with wild-type controls. In vitro, isoproterenol, 8-CPT-cAMP (an Epac agonist), and osteopontin (a ligand of CD44) significantly upregulated the expression of p-CaMKII, p-RyR, and p-PLN; this effect was attenuated by CD44 small interfering RNA (siRNA). In myocytes, resting Ca2+ sparks were induced by isoproterenol and overexpressed CD44, which were prevented by inhibiting CD44. Ex vivo optical mapping and in vivo intra-cardiac pacing studies showed isoproterenol-induced triggered events and arrhythmias in ventricles were prevented in CD44-/- mice. The inducibility of ventricular arrhythmias (VAs) was attenuated in CD44-/- HF mice compared with wild-type HF controls. In patients, CD44 were upregulated, and the association between CD44 and Epac1 were increased in ventricles with reduced contractility. CONCLUSION: CD44 regulates ß-AR- and Epac1-mediated Ca2+-handling abnormalities and VAs. Inhibition of CD44 is effective in reducing VAs in HF, which is potentially a novel therapeutic target for preventing the arrhythmias and sudden cardiac death in patients with diseased hearts.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Receptores Adrenérgicos beta , Humanos , Camundongos , Animais , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Isoproterenol/farmacologia , Isoproterenol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/farmacologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo
7.
Int J Mol Sci ; 24(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37628921

RESUMO

KCNH2 loss-of-function mutations cause long QT syndrome type 2 (LQT2), an inherited cardiac disorder associated with life-threatening ventricular arrhythmia. Through whole-exome sequencing, we discovered a novel AGCGACAC deletion (S981fs) in the hERG gene of an LQT2 patient. Using a heterologous expression system and patch clamping, we found that the mutant K channel had reduced cell surface expression and lower current amplitude compared to the wild type. However, functional expression was restored by lowering temperature and using potassium channel inhibitors or openers (E4031, cisapride, nicorandil). Co-immunoprecipitation experiments confirmed the assembly of mutant proteins with wild-type hERG. Confocal imaging showed decreased hERG distribution on the cell membrane in cells expressing S981fs. Notably, treatment with G418 significantly increased hERG current in wild-type/S981fs heterozygotes. In conclusion, our study identifies a novel hERG mutation leading to impaired Kv11.1 function due to trafficking and nonsense-mediated RNA decay defects. These findings shed light on the mechanisms underlying LQT2 and offer potential therapeutic avenues.


Assuntos
Síndrome do QT Longo , Humanos , Sequenciamento do Exoma , Síndrome do QT Longo/genética , Coração , Membrana Celular , Mutação , Canal de Potássio ERG1/genética
8.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35743252

RESUMO

Derangements in cardiac energy metabolism have been shown to contribute to the development of heart failure (HF). This study combined transcriptomics and metabolomics analyses to characterize the changes and reversibility of cardiac energetics in a rat model of cardiac volume overload (VO) with the creation and subsequent closure of aortocaval fistula. Male Sprague-Dawley rats subjected to an aortocaval fistula surgery for 8 and 16 weeks exhibited characteristics of compensated hypertrophy (CH) and HF, respectively, in echocardiographic and hemodynamic studies. Glycolysis was downregulated and directed to the hexosamine biosynthetic pathway (HBP) and O-linked-N-acetylglucosaminylation in the CH phase and was further suppressed during progression to HF. Derangements in fatty acid oxidation were not prominent until the development of HF, as indicated by the accumulation of acylcarnitines. The gene expression and intermediates of the tricarboxylic acid cycle were not significantly altered in this model. Correction of VO largely reversed the differential expression of genes involved in glycolysis, HBP, and fatty acid oxidation in CH but not in HF. Delayed correction of VO in HF resulted in incomplete recovery of defective glycolysis and fatty acid oxidation. These findings may provide insight into the development of innovative strategies to prevent or reverse metabolic derangements in VO-induced HF.


Assuntos
Insuficiência Cardíaca , Transcriptoma , Animais , Metabolismo Energético/genética , Ácidos Graxos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Masculino , Metabolômica , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708358

RESUMO

The molecular mechanism for worsening left ventricular (LV) function after mitral valve (MV) repair for chronic mitral regurgitation remains unknown. We wished to assess the LV transcriptome and identify determinants associated with worsening LV function post-MV repair. A total of 13 patients who underwent MV repair for chronic primary mitral regurgitation were divided into two groups, preserved LV function (N = 8) and worsening LV function (N = 5), for the study. Specimens of LV from the patients taken during surgery were used for the gene microarray study. Cardiomyocyte cell line HL-1 cells were transfected with gene-containing plasmids and further evaluated for mRNA and protein expression, apoptosis, and contractile protein degradation. Of 67,258 expressed sequence tags, microarrays identified 718 genes to be differentially expressed between preserved-LVF and worsening-LVF, including genes related to the protein ubiquitination pathway, bone morphogenetic protein (BMP) receptors, and regulation of eIF4 and p70S6K signaling. In addition, worsening-LVF was associated with altered expressions of genes pathologically relevant to heart failure, such asdownregulated apelin receptors and upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A). HL-1 cardiomyocyte cells transfected with ubiquitination-related genes demonstrated activation of the protein ubiquitination pathwaywith an increase in the ubiquitin activating enzyme E1 (UAE-E1). It also led to increased apoptosis, downregulated and ubiquitinated X-linked inhibitor of apoptosis protein (XIAP), and reduced cell viability. Overexpression of ubiquitination-related genes also resulted in degradation and increased ubiquitination of α-smooth muscle actin (SMA). In conclusion, worsening-LVF presented differential gene expression profiles from preserved-LVF after MV repair. Upregulation of protein ubiquitination-related genes associated with worsening-LVF after MV repair may exert adverse effects on LV through increased apoptosis and contractile protein degradation.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência da Valva Mitral/metabolismo , Valva Mitral/metabolismo , Miócitos Cardíacos/metabolismo , Ubiquitina/metabolismo , Função Ventricular Esquerda/genética , Actinas/metabolismo , Adulto , Idoso , Apoptose/genética , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Feminino , Regulação da Expressão Gênica/genética , Insuficiência Cardíaca/genética , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valva Mitral/enzimologia , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/enzimologia , Insuficiência da Valva Mitral/genética , Insuficiência da Valva Mitral/fisiopatologia , Análise de Sequência com Séries de Oligonucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinação/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
10.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932651

RESUMO

Aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies reactive oxygen species (ROS)-generated aldehyde adducts such as 4-hydroxy-trans-2-nonenal (4-HNE). Previous meta-analyses have shown an increase in the risk of atrial fibrillation (AF) in patients with chronic alcohol consumption. ALDH2*2, a common dysfunctional polymorphism in the ALDH2 gene, has been linked to an increased risk of cancer and heart disease. We tested the effect of ALDH2 deficiency on alcohol-induced AF in a murine model of chronic-binge ethanol feeding, with ALDH2*2 knock-in (KI) mice generated by a CRISPR/CAS9 system. In addition, right atrial appendages were obtained from eight patients with AF undergoing open heart surgery. The results showed that burst atrial pacing induced a greater susceptibility to AF in ALDH2*2 KI mice exposed to chronic ethanol intoxication than in wild-type mice, resulting from a higher degree of 4-HNE accumulation and collagen deposition in their atria. Alda-1 attenuated transforming growth factor beta 1 (TGF-ß1) expression and collagen deposition in the atria and reduced AF inducibility. Patients with AF and the ALDH2*2 allele exhibited greater oxidative stress and substrate remodeling in their atria than non-carriers. In conclusion, ALDH2 deficiency may increase the risk of chronic alcohol and tachypacing-induced AF through the accumulation of 4-HNE and increased ROS production.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeídos/metabolismo , Fibrilação Atrial/metabolismo , Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Alcoolismo/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Alelos , Animais , Fibrilação Atrial/genética , Colágeno/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/genética , Polimorfismo Genético/genética , Fator de Crescimento Transformador beta/metabolismo
11.
J Mol Cell Cardiol ; 135: 67-78, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419440

RESUMO

Atrial fibrillation (AF) is associated with oxidative stress and Ca2+-handling abnormalities in atrial myocytes. Our prior study has demonstrated the involvement of CD44, a membrane receptor for hyaluronan (HA), in the pathogenesis of AF. This study further evaluated whether CD44 and its related signaling mediate atrial tachycardia-induced oxidative stress and Ca2+-handling abnormalities. Tachypacing in atrium-derived myocytes (HL-1 cell line) induced the activation of CD44-related signaling, including HA and HA synthase (HAS) expression. Blocking HAS/HA/CD44 signaling attenuated tachypacing-induced oxidative stress (NADPH oxidase [NOX] 2/4 expression) and Ca2+-handling abnormalities (oxidized Ca2+/calmodulin-dependent protein kinase II [ox-CaMKII] and phospho-ryanodine receptor type 2 [p-RyR2] expression) in HL-1 myocytes. Furthermore, a direct association between CD44 and NOX4 was documented in tachy-paced HL-1 myocytes and atrial tissues from AF patients. In vitro, Ca2+ spark frequencies in atrial myocytes isolated from CD44-/- mice were lower than those from wild-type mice. Furthermore, administration of an anti-CD44 blocking antibody in atrial myocytes isolated from wild-type mice diminished the frequency of Ca2+ spark. Ex vivo tachypacing models of CD44-/- mice exhibited a lower degree of oxidative stress and expression of ox-CaMKII/p-RyR2 in their atria than those of wild-type mice. In vivo, burst atrial pacing stimulated a less inducibility of AF in CD44-/-mice than in wild-type mice. In conclusion, atrial tachypacing-induced Ca2+-handling abnormalities are mediated via CD44/NOX4 signaling, which provides a possible explanation for the development of AF.


Assuntos
Fibrilação Atrial/genética , Remodelamento Atrial/genética , Átrios do Coração/metabolismo , NADPH Oxidase 4/genética , Taquicardia/genética , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Remodelamento Atrial/fisiologia , Sinalização do Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Átrios do Coração/patologia , Humanos , Receptores de Hialuronatos/genética , Ácido Hialurônico/genética , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , Canal de Liberação de Cálcio do Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Transdução de Sinais/genética , Taquicardia/patologia
12.
J Cell Mol Med ; 23(8): 5679-5691, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31339670

RESUMO

Mechanical ventilation (MV) can save the lives of patients with sepsis. However, MV in both animal and human studies has resulted in ventilator-induced diaphragm dysfunction (VIDD). Sepsis may promote skeletal muscle atrophy in critically ill patients. Elevated high-mobility group box-1 (HMGB1) levels are associated with patients requiring long-term MV. Ethyl pyruvate (EP) has been demonstrated to lengthen survival in patients with severe sepsis. We hypothesized that the administration of HMGB1 inhibitor EP or anti-HMGB1 antibody could attenuate sepsis-exacerbated VIDD by repressing HMGB1 signalling. Male C57BL/6 mice with or without endotoxaemia were exposed to MV (10 mL/kg) for 8 hours after administrating either 100 mg/kg of EP or 100 mg/kg of anti-HMGB1 antibody. Mice exposed to MV with endotoxaemia experienced augmented VIDD, as indicated by elevated proteolytic, apoptotic and autophagic parameters. Additionally, disarrayed myofibrils and disrupted mitochondrial ultrastructures, as well as increased HMGB1 mRNA and protein expression, and plasminogen activator inhibitor-1 protein, oxidative stress, autophagosomes and myonuclear apoptosis were also observed. However, MV suppressed mitochondrial cytochrome C and diaphragm contractility in mice with endotoxaemia (P < 0.05). These deleterious effects were alleviated by pharmacologic inhibition with EP or anti-HMGB1 antibody (P < 0.05). Our data suggest that EP attenuates endotoxin-enhanced VIDD by inhibiting HMGB1 signalling pathway.


Assuntos
Diafragma/fisiopatologia , Endotoxemia/etiologia , Endotoxemia/fisiopatologia , Proteína HMGB1/metabolismo , Piruvatos/uso terapêutico , Respiração Artificial/efeitos adversos , Animais , Anticorpos/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Citocinas/metabolismo , Endotoxinas/efeitos adversos , Radicais Livres/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Piruvatos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L1-L13, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31017016

RESUMO

Cysteine cathepsin proteases play critical roles in cardiovascular disease progression and are implicated in extracellular matrix (ECM) degradation. Patients with pulmonary arterial hypertension (PAH) exhibit increased elastase production by pulmonary arterial smooth muscle cells (PASMCs), which is related to the degradation of elastic fibers and pulmonary vascular remodeling. However, the mechanism by which cathepsins regulate the ECM and PASMC proliferation in PAH remains unclear. We hypothesized that cathepsin proteases in PASMCs promote the development of PAH. Here, we show overexpression of cathepsin S (Cat S) and degradation of elastic laminae in the lungs of patients with idiopathic PAH and in the PASMCs of monocrotaline-induced PAH model (MCT-PAH) rats. In addition, pulmonary hypertension can be treated in MCT-PAH rats by administering a selective Cat S inhibitor, Millipore-219393, which stimulates peroxisome proliferator-activated receptor-γ (PPARγ) to inhibit the expression of Cat S, thus suppressing the proliferation and migration of MCT-PAH PASMCs. We then reduced Cat S or PPARγ expression by using small interfering RNA in human PASMCs to demonstrate a mechanistic link between Cat S signaling and PPARγ protein, and the results suggest that PPARγ is upstream of Cat S signaling. In conclusion, the activity of Cat S in pulmonary vascular remodeling and degradation of elastin fibers through the disruption of PPARγ is pathophysiologically significant in PAH.


Assuntos
Catepsinas/genética , Miócitos de Músculo Liso/metabolismo , PPAR gama/genética , Hipertensão Arterial Pulmonar/genética , Artéria Pulmonar/metabolismo , Idoso , Animais , Anti-Hipertensivos/farmacologia , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Monocrotalina/administração & dosagem , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Elastase Pancreática/genética , Elastase Pancreática/metabolismo , Cultura Primária de Células , Inibidores de Proteases/farmacologia , Hipertensão Arterial Pulmonar/induzido quimicamente , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
14.
J Pharmacol Exp Ther ; 368(1): 66-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30381326

RESUMO

Diabetic patients with cardiomyopathy show a higher incidence of arrhythmias and sudden death. Chronic hyperglycemia induces the formation of advanced glycation end products (AGEs), which contribute to the pathogenesis of diabetic cardiomyopathy. This study investigated whether inhibition of AGEs formation by aminoguanidine (AG) could prevent cardiac electromechanical and arrhythmogenic remodeling in diabetes mellitus. Streptozotocin-induced diabetic rats received AG (100 mg/kg daily, i.p.) or vehicle (normal saline, i.p.) for 5 weeks. The rats underwent hemodynamic recording to evaluate cardiac function, and heart preparations were used to determine the electrical, mechanical, and biochemical functions. In vitro high glucose-induced AGEs formation, reactive oxygen species (ROS) generation, and action potential changes were examined in HL-1 atrial cells. AG treatment improved the diabetes-induced depression in left ventricular pressure and the relaxation rate, and normalized the prolongation of QTc intervals in anesthetized rats. AG reduced the vulnerabilities to atrial and ventricular tachyarrhythmias in perfused diabetic hearts. AG normalized the prolonged action potential duration in diabetic atrial and ventricular muscles, which was correlated with the restoration of both transient outward (I to) and steady-state outward (I SS) K+ current densities in cardiomyocytes. The abnormal kinetics of Ca2+ transients and contraction were reversed in cardiomyocytes from AG-treated diabetic rats, along with parallel preservation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) expression. Furthermore, ex vivo and in vitro studies showed AG attenuated AGEs and ROS formation. Thus, long-term administration of AG ameliorated cardiac electromechanical remodeling and arrhythmogenicity in diabetic rats and may present an effective strategy for the prevention of diabetes-associated arrhythmias.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Produtos Finais de Glicação Avançada/metabolismo , Miócitos Cardíacos/metabolismo , Taquicardia/metabolismo , Remodelação Ventricular/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatologia , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Taquicardia/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
15.
Cardiovasc Diabetol ; 18(1): 125, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558158

RESUMO

BACKGROUND: Insulin resistance (IR) is considered as a risk factor for atrial fibrillation (AF) even before diabetes develops. The pathophysiology and underlying mechanism are largely unclear. METHODS: We investigated the corresponding mechanism in two IR models of rats fed 15-week high-fat (HFa) and high-fructose/cholesterol (HFr) diets. AF was evaluated and induced by burst atrial pacing. Isolated atrial myocytes were used for whole-cell patch clamp and calcium assessment. Ex vivo whole heart was used for optical mapping. Western blot and immunofluorescence were used for quantitative protein evaluation. RESULTS: Both HFa and HFr rat atria were vulnerable to AF evaluated by burst atrial pacing. Isolated atrial myocytes from HFa and HFr rats revealed significantly increased sarcoplasmic reticulum calcium content and diastolic calcium sparks. Whole-heart mapping showed prolonged calcium transient duration, conduction velocity reduction, and repetitive ectopic focal discharge in HFa and HFr atria. Protein analysis revealed increased TGF-ß1 and collagen expression; increased superoxide production; abnormal upregulation of calcium-homeostasis-related proteins, including oxidized CaMKIIδ, phosphorylated-phospholamban, phosphorylated-RyR-2, and sodium-calcium exchanger; and increased Rac1 activity in both HFa and HFr atria. We observed that inhibition of CaMKII suppressed AF in both HF and HFr diet-fed rats. In vitro palmitate-induced IR neonatal cardiomyocytes and atrial fibroblasts expressed significantly more TGF-ß1 than did controls, suggesting paracrine and autocrine effects on both myocytes and fibroblasts. CONCLUSIONS: IR engenders both atrial structural remodeling and abnormal intracellular calcium homeostasis, contributing to increased AF susceptibility. The inhibition of CaMKII may be a potential therapeutic target for AF in insulin resistance.


Assuntos
Fibrilação Atrial/etiologia , Remodelamento Atrial , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Resistência à Insulina , Potenciais de Ação , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Biomarcadores/sangue , Glicemia/metabolismo , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Colesterol na Dieta , Dieta Hiperlipídica , Açúcares da Dieta , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Frutose , Sistema de Condução Cardíaco/metabolismo , Insulina/sangue , Masculino , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo
16.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835587

RESUMO

Inherited cardiac conduction disease (CCD) is rare; it is caused by a large number of mutations in genes encoding cardiac ion channels and cytoskeletal proteins. Recently, whole-exome sequencing has been successfully used to identify causal mutations for rare monogenic Mendelian diseases. We used trio-based whole-exome sequencing to study a Chinese family with multiple family members affected by CCD, and identified a heterozygous missense mutation (c.343C>T, p.Leu115Phe) in the desmin (DES) gene as the most likely candidate causal mutation for the development of CCD in this family. The mutation is novel and is predicted to affect the conformation of the coiled-coil rod domain of DES according to structural model prediction. Its pathogenicity in desmin protein aggregation was further confirmed by expressing the mutation, both in a cellular model and a CRISPR/CAS9 knock-in mouse model. In conclusion, our results suggest that whole-exome sequencing is a feasible approach to identify candidate genes underlying inherited conduction diseases.


Assuntos
Doença do Sistema de Condução Cardíaco/genética , Desmina/genética , Sequenciamento do Exoma/métodos , Mutação de Sentido Incorreto , Adulto , Idoso , Animais , Povo Asiático/genética , Desmina/química , Feminino , Células HeLa , Homozigoto , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Conformação Proteica
17.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L349-L359, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146573

RESUMO

Prostacyclin agonists that bind the prostacyclin receptor (IP) to stimulate cAMP synthesis are effective vasodilators for the treatment of idiopathic pulmonary arterial hypertension (IPAH), but this signaling may occur through nuclear peroxisome proliferator-activated receptor-γ (PPARγ). There is evidence of scant IP and PPARγ expression but stable prostanoid EP4 receptor (EP4) expression in IPAH patients. Both IP and EP4 functionally couple with stimulatory G protein (Gs), which activates signal transduction. We investigated the effect of an EP4-specific agonist on pulmonary arterial remodeling and its regulatory mechanisms in pulmonary arterial smooth muscle cells (PASMCs). Immunoblotting evealed IP, EP4, and PPARγ expression in human pulmonary arterial hypertension (PAH) and monocrotaline (MCT)-induced PAH rat lung tissue. Isolated PASMCs from MCT-induced PAH rats (MCT-PASMCs) were treated with L-902,688, a selective EP4 agonist, to investigate the anti-vascular remodeling effect. Scant expression of IP and PPARγ but stable expression of EP4 was observed in IPAH patient lung tissues and MCT-PASMCs. L-902,688 inhibited IP-insufficient MCT-PASMC proliferation and migration by activating PPARγ in a time- and dose-dependent manner, but these effects were reversed by AH-23848 (an EP4 antagonist) and H-89 [a protein kinase A (PKA) inhibitor], highlighting the crucial role of PPARγ in the activity of this EP4 agonist. L-902,688 attenuated pulmonary arterial remodeling in hypoxic PAH mice and MCT-induced PAH rats; therefore, we conclude that the selective EP4 agonist L-902,688 reverses vascular remodeling by activating PPARγ. This study identified a novel EP4-PKA-PPARγ pathway, and we propose EP4 as a potential therapeutic target for PAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , PPAR gama/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Pirrolidinonas/farmacologia , Receptores de Prostaglandina E Subtipo EP4/agonistas , Tetrazóis/farmacologia , Adulto , Animais , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar Primária Familiar/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Adulto Jovem
18.
Pacing Clin Electrophysiol ; 41(9): 1116-1122, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928764

RESUMO

BACKGROUND: Piceatannol, a grape-derived polyphenol, has been linked to proarrhythmic properties by aggravating inhomogeneous conduction delay in the ischemia-reperfusion (IR) zone to enhance arrhythmogenic alternans in heart failure (HF) rabbits. The underlying molecular mechanisms of piceatannol-induced conduction disturbance were unclear in this model. METHODS: HF was induced by 4 weeks' rapid ventricular pacing. IR injury was induced in vivo using a protocol of left coronary artery ligation and release. Left ventricular cardiomyocytes were isolated enzymatically for whole-cell patch-clamp studies. Piceatannol (10 µM) was administrated to test its inhibitory effect on sodium current (INa ). Immunoblots studies and immunoenzymological staining were conducted in tissues sampled from the IR and remote zones. RESULTS: Peak INa density was less in failing cardiomyocytes than control cardiomyocytes. IR injury further reduces peak INa density in both groups. Piceatannol showed a greater INa inhibitory effect in HF than control cardiomyocytes. Western blots showed reduced NaV 1.5 protein expression in the HF group compared to the control group but no significant difference between remote and IR zones. Immunostaining showed that IR led to cytosolic redistribution of NaV 1.5, especially in failing hearts. CONCLUSIONS: Downregulation of NaV 1.5 protein expression and reduced peak INa density are found in the failing hearts. Piceatannol exerts a greater inhibitory effect on peak INa in the failing cardiomyocytes than in the controls. IR injury further decreases peak INa density, which is more prominent in the failing hearts than in the control hearts.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Estilbenos/farmacologia , Animais , Western Blotting , Regulação para Baixo , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Coelhos , Traumatismo por Reperfusão/fisiopatologia
19.
Am J Physiol Regul Integr Comp Physiol ; 313(5): R601-R607, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855180

RESUMO

Blood lactate increases during incremental exercise at high-intensity workloads, and limited exercise capacity is a characteristic of obese animals. This study examined whether blood lactate changes in response to incremental exercise is disrupted in obese animals. Muscular and hepatic proteins that are critical in lactate metabolism were also investigated. Rats were randomized to either standard chow (control) or high-fat diet (HFD) groups. All animals underwent an incremental treadmill test after 14 wk of diet intervention. Blood lactate levels were measured before and after the treadmill test. Activities of mitochondrial oxidative phosphorylation and glycolysis were examined in muscle tissues. Proteins in the liver and skeletal muscles that participate in the turnover of blood lactate were determined by Western blot. Running time in the incremental treadmill test decreased in the HFD group, and blood lactate accumulated faster in these animals than in the control group. Animals with HFD had a decreased level of hepatic monocarboxylate transporter 2, the protein responsible for blood lactate uptake in the liver. Skeletal muscles of animals with HFD showed greater glycolytic activity and decreased content of lactate dehydrogenase B, which converts lactate to pyruvate. We conclude that blood lactate accumulated faster during incremental exercise in obese animals and was associated with their decreased exercise performance. Changes in the metabolic pattern of muscles and changes of liver and muscle proteins associated with lactate utilization likely contribute to the abnormal response of blood lactate to incremental exercise in obese animals.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Ácido Láctico/sangue , Fígado/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Obesidade/sangue , Esforço Físico , Adaptação Fisiológica , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/etiologia , Obesidade/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
20.
Histopathology ; 70(6): 986-999, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28032914

RESUMO

AIMS: To characterize the clinicopathological and genetic features of pleomorphic mantle cell lymphoma (PMCL), which morphologically mimics diffuse large B cell lymphoma (DLBCL). METHODS AND RESULTS: We screened systematically 500 B cell lymphomas morphologically compatible with DLBCL using an immunohistochemical algorithm of three markers (CD5, cyclin D1 and SOX11). Ten cases of PMCL were identified for further study and, surprisingly, four (40%) of them were cyclin D1-negative. These 10 patients were mainly elderly males with advanced disease, and their median survival was only 11 months. All cyclin D1-positive PMCLs tested showed an IGH-CCND1 translocation, whereas one of the four cyclin D1-negative PMCLs had a translocation involving CCND2 and a high CCND2 mRNA level (P < 0.000001). The genomewide copy number profiles of both cyclin D1-positive and cyclin D1-negative PMCLs were similar to those of classical mantle cell lymphoma (MCL) reported previously, confirming the diagnosis. Secondary genetic alterations involved in oncogenic pathways of MCL were observed more frequently in these PMCLs, possibly decreasing the dependence on the driving CCND1 translocation and accounting for the common cyclin D1 negativity. Copy number gains of PIK3CA and CCDC50 were detected in all cyclin D1-negative PMCLs but in only 40% of the cyclin D1-positive PMCLs. These additional oncogenic signals may compensate for the common absence of CCND2 translocation in cyclin D1-negative PMCL. CONCLUSION: We demonstrate for the first time that cyclin D1 negativity is surprisingly common in PMCL morphologically mimicking DLBCL, and the use of a simple immunohistochemical algorithm can prevent misclassification and inappropriate treatment.


Assuntos
Algoritmos , Biomarcadores Tumorais/análise , Imuno-Histoquímica/métodos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma de Célula do Manto/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Classe I de Fosfatidilinositol 3-Quinases , Ciclina D1/biossíntese , Diagnóstico Diferencial , Feminino , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfoma Difuso de Grandes Células B/genética , Linfoma de Célula do Manto/genética , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Reação em Cadeia da Polimerase , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA