Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Small ; 20(11): e2306569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095443

RESUMO

The use of 2D materials to produce hydrogen (H2 ) fuel via photocatalytic water splitting has been intensively studied. However, the simultaneous fulfillment of the three essential requirements-high photon utilization, rapid carrier transfer, and low-barrier redox reactions-for wide-pH-range production of H2 still poses a significant challenge with no additional modulation. By employing the first-principles calculations, it has been observed that the Janus ZnXY2 structures (X = Si/Ge/Sn, Y = S/Se/Te) exhibit significantly enhanced built-in electric fields (0.20-0.36 eV Å-1 ), which address the limitations intrinsically. Compared to conventional Janus membranes, the ductile ZnSnSe2 and ZnSnTe2 monolayers have stronger regulation of electric fields, resulting in improved electron mobility and excitonic nature (Ebinding = 0.50/0.35 eV). Both monolayers exhibit lower energy barriers of hydrogen evolution reaction (HER, 0.98/0.86 eV, pH = 7) and resistance to photocorrosion across pH 0-7. Furthermore, the 1% tensile strain can further boost visible light utilization and intermediate absorption. The optimal AC-type bilayer stacking configuration is conducive to enhancing electric fields for photocatalysis. Overall, Janus ZnXY2 membranes overcome the major challenges faced by conventional 2D photocatalysts via intrinsic polarization and external amelioration, enabling efficient and controllable photocatalysis without the need for doping or heterojunctions.

2.
Environ Res ; 262(Pt 2): 119888, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216736

RESUMO

Low pressure membrane takes a great role in hydraulic fracturing wastewater (HFW), while membrane fouling is a critical issue for the stable operation of microfiltration (MF). This study focused on fouling mitigation by sodium percarbonate (SPC) oxidation, activated by ultraviolet (UV) and ferrous ion (Fe(II)). The higher the concentration of oxidizer, the better the anti-fouling performance of MF membrane. Unlike severe MF fouling without oxidation (17.26 L/(m2·h)), UV/SPC and Fe(II)/SPC under optimized dosage improved the final flux to 740 and 1553 L/(m2·h), respectively, and the latter generated Fe(III) which acted as a coagulant. Fe(II)/SPC oxidation enabled a shift in fouling mechanism from complete blocking to cake filtration, while UV/SPC oxidation changed it to standard blockage. UV/SPC oxidation was stronger than Fe(II)/SPC oxidation in removing UV254 and fluorescent organics for higher oxidizing capacity, but the opposite was noted for DOC removal. The deposited foulants on membrane surface after oxidation decreased by at least 88% compared to untreated HFW. Correlation analysis showed that UV254, DOC and organic fraction were key parameters responsible for membrane fouling (correlation coefficient>0.80), oxidizing capacity and turbidity after oxidation were also important parameters. These results provide new insights for fouling control during the HFW treatment.

3.
FASEB J ; 36(5): e22317, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35438806

RESUMO

Polyinosinic-polycytidylic acid (poly(I:C)) is the agonist of Toll-like receptor 3 (TLR3), which participates in innate immune responses under the condition of myocardial ischemia/reperfusion injury (MIRI). It has been shown that poly(I:C) exhibited cardioprotective activities through the PI3K/Akt pathway, which is the main signal transduction pathway during autophagy. However, the precise mechanism by whether poly(I:C) regulates autophagy remains poorly understood. Thus, this study was designed to investigate the therapeutic effect of poly(I:C) against MIRI and the underlying pathway connection with autophagy. We demonstrated that 1.25 and 5 mg/kg poly(I:C) preconditioning significantly reduced myocardial infarct size and cardiac dysfunction. Moreover, poly(I:C) significantly promoted cell survival by restoring autophagy flux and then regulating it to an adequate level Increased autophagy protein Beclin1 and LC3II together with p62 degradation after additional chloroquine. In addition, mRFP-GFP-LC3 adenoviruses exhibited autophagy activity in neonatal rat cardiac myocytes (NRCMs). Mechanistically, poly(I:C) activated the PI3K/AKT/mTOR pathway to induce autophagy, which was abolished by LY294002 (PI3K antagonist), rapamycin (autophagy activator and mTOR inhibitor), or 3-methyladenine (autophagy inhibitor), suggesting either inhibition of the PI3K/Akt/mTOR pathway or autophagy activity interrupt the beneficial effect of poly(I:C) preconditioning. In conclusion, poly(I:C) promotes cardiomyocyte survival from ischemia/reperfusion injury by regulating autophagy via the PI3K/Akt/mTOR pathway.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Apoptose , Autofagia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Serina-Treonina Quinases TOR/metabolismo
4.
Mol Med ; 28(1): 127, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303116

RESUMO

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6,877,002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Assuntos
Ligante de CD40 , Sepse , Humanos , Camundongos , Animais , Ligante de CD40/metabolismo , Células CACO-2 , Ocludina/metabolismo , S-Nitrosoglutationa/metabolismo , RNA Interferente Pequeno , Fator 6 Associado a Receptor de TNF/metabolismo , Meios de Cultivo Condicionados , Ativação Plaquetária , Sepse/metabolismo , Neuroglia/metabolismo , Proteínas de Junções Íntimas/metabolismo
5.
Mol Med ; 28(1): 137, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401163

RESUMO

BACKGROUND: Intestinal barrier dysfunction, which is associated with reactive enteric glia cells (EGCs), is not only a result of early sepsis but also a cause of multiple organ dysfunction syndrome. Inhibition of platelet activation has been proposed as a potential treatment for septic patients because of its efficacy in ameliorating the organ damage and barrier dysfunction. During platelet activation, CD40L is translocated from α granules to the platelet surface, serving as a biomarker of platelet activation a reliable predictor of sepsis prognosis. Given that more than 95% of the circulating CD40L originate from activated platelets, the present study aimed to investigate if inhibiting platelet activation mitigates intestinal barrier dysfunction is associated with suppressing reactive EGCs and its underlying mechanism. METHODS: Cecal ligation and puncture (CLP) was performed to establish the sepsis model. 24 h after CLP, the proportion of activated platelets, the level of sCD40L, the expression of tight-junction proteins, the intestinal barrier function and histological damage of septic mice were analyzed. In vitro, primary cultured EGCs were stimulated by CD40L and LPS for 24 h and EGCs-conditioned medium were collected for Caco-2 cells treatment. The expression of tight-junction proteins and transepithelial electrical resistance of Caco-2 cell were evaluated. RESULTS: In vivo, inhibiting platelet activation with cilostazol mitigated the intestinal barrier dysfunction, increased the expression of ZO-1 and occludin and improved the survival rate of septic mice. The efficacy was associated with reduced CD40L+ platelets proportion, decreased sCD40L concentration, and suppressed the activation of EGCs. Comparable results were observed upon treatment with compound 6877002, a blocker of CD40L-CD40-TRAF6 signaling pathway. Also, S-nitrosoglutathione supplement reduced intestinal damage both in vivo and in vitro. In addition, CD40L increased release of TNF-α and IL-1ß while suppressed the release of S-nitrosoglutathione from EGCs. These EGCs-conditioned medium reduced the expression of ZO-1 and occludin on Caco-2 cells and their transepithelial electrical resistance, which could be reversed by CD40-siRNA and TRAF6-siRNA transfection on EGCs. CONCLUSIONS: The inhibition of platelet activation is related to the suppression of CD40L-CD40-TRAF6 signaling pathway and the reduction of EGCs activation, which promotes intestinal barrier function and survival in sepsis mice. These results might provide a potential therapeutic strategy and a promising target for sepsis.


Assuntos
Ligante de CD40 , Sepse , Humanos , Camundongos , Animais , Ocludina/metabolismo , Ligante de CD40/metabolismo , Células CACO-2 , S-Nitrosoglutationa/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , RNA Interferente Pequeno , Meios de Cultivo Condicionados/metabolismo , Ativação Plaquetária , Sepse/metabolismo , Neuroglia/metabolismo , Proteínas de Junções Íntimas/metabolismo
6.
Neurochem Res ; 46(6): 1410-1422, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33656693

RESUMO

Propofol and dexmedetomidine are popular used for sedation in ICU, however, inadequate attention has been paid to their effect on gastrointestinal tract (GIT) motility. Present study aimed to compare the effect of propofol and dexmedetomidine on GIT motility at parallel level of sedation and explore the possible mechanism. Male C57BL/6 mice (8-10 weeks) were randomly divided into control, propofol and dexmedetomidine group. After intraperitoneal injection of propofol or dexmedetomidine, comparable sedative level was confirmed by sedative score, physiological parameters and electroencephalogram (EEG). Different segments of GIT motility in vivo (gastric emptying, small intestine transit, distal colon bead expulsion, stool weight and number of fecal pellets, gastrointestinal transit and whole gut transit time) and colonic migrating motor complexes (CMMCs) pattern in vitro were evaluated. The Ca2+ response of primary enteric glia was examined under the treatment of propofol or dexmedetomidine. There is little difference in physiological parameters and composite permutation entropy index (CPEI) between administration of 50 mg/kg propofol and 40 µg/kg dexmedetomidine, indicated that parallel level of sedation was reached. Data showed that propofol and dexmedetomidine had significantly inhibitory effect on GIT motility while dexmedetomidine was stronger. Also, the amplitude (ΔF/F0) of Ca2+ response in primary enteric glia was attenuated after treated with the sedatives while the effect of dexmedetomidine was greater than propofol. These findings demonstrated that dexmedetomidine caused stronger inhibitory effects on GIT motility in sedative mice, which may involve impaired Ca2+ response in enteric glia. Hence, dexmedetomidine should be carefully applied especially for potential GIT dysmotility patient.


Assuntos
Cálcio/metabolismo , Dexmedetomidina/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Neuroglia/efeitos dos fármacos , Propofol/farmacologia , Animais , Células Cultivadas , Colo/efeitos dos fármacos , Defecação/efeitos dos fármacos , Esvaziamento Gástrico/efeitos dos fármacos , Trânsito Gastrointestinal/efeitos dos fármacos , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
7.
Environ Sci Technol ; 55(3): 1395-1418, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314911

RESUMO

Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.


Assuntos
Destilação , Purificação da Água , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Molhabilidade
8.
Clin Sci (Lond) ; 134(16): 2161-2175, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32794577

RESUMO

Diabetes-associated cognitive impairment (DACI) can increase the risk of major cardiovascular events and death. Neuronal functionality is highly dependent on mitochondria and emerging evidence has shown that mitochondrial transplantation is a potential and effective strategy that can reduce brain injury and associated disorders. Platelets are abundant in blood and can be considered a readily available source of small-size mitochondria. These cells can be easily acquired from the peripheral blood with minimal invasion via simple venipuncture. The present study aimed to investigate whether transplantation of platelet-derived mitochondria (Mito-Plt) could improve DACI. Cognitive behaviors were assessed using the Morris water maze test in db/db mice. The results demonstrated that Mito-Plt was internalized into hippocampal neurons 24 h following intracerebroventricular injection. Importantly, one month following Mito-Plt transplantation, DACI was alleviated in db/db mice and the effect was accompanied with increased mitochondrial number, restored mitochondrial function, attenuated oxidative stress and neuronal apoptosis, as well as decreased accumulation of Aß and Tau in the hippocampus. Taken together, the data demonstrated that transplantation of Mito-Plt attenuated cognitive impairment and mitochondrial dysfunction in db/db mice. This method may be a potential therapeutic application for the treatment of DACI.


Assuntos
Plaquetas/metabolismo , Disfunção Cognitiva/terapia , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/transplante , Animais , Apoptose , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Hipocampo/citologia , Hipocampo/metabolismo , Injeções Intraventriculares , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Ratos Sprague-Dawley , Transplante Heterólogo
9.
Environ Sci Technol ; 54(17): 10926-10935, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32693582

RESUMO

Fertilizer drawn forward osmosis (FDFO) was proposed to extract fresh water from flowback and produced water (FPW) from shale gas extraction for irrigation, with fertilizer types and membrane orientations assessed. The draw solution (DS) with NH4H2PO4 displayed the best performance, while the DS with (NH4)2HPO4 resulted in the most severe membrane fouling. The DS with KCl and KNO3 led to substantial reverse solute fluxes. The FDFO operation where the active layer of the membrane was facing the feed solution outperformed that when the active layer was facing the DS. The diluted DS and diluted FPW samples were used for irrigation of Cherry radish and Chinese cabbage. Compared to deionized water, irrigation with the diluted DS (total dissolved solid (TDS) = 350 mg·L-1) promoted plant growth. In contrast, inhibited plant growth was observed when FPW with high salinity (TDS = 5000 mg·L-1) and low salinity (TDS = 1000 mg·L-1) was used for irrigation of long-term (8-week) plant cultures. Finally, upregulated genes were identified to illustrate the difference in plant growth. The results of this study provide a guide for efficient and safe use of FPW after FDFO treatment for agricultural application.


Assuntos
Fertilizantes , Purificação da Água , Fertilizantes/análise , Membranas Artificiais , Gás Natural , Osmose , Água
10.
BMC Anesthesiol ; 20(1): 227, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894042

RESUMO

BACKGROUND: Sepsis often accompanies gastrointestinal motility disorder that contributes to the development of sepsis in turn. Propofol and dexmedetomidine, as widely used sedatives in patients with sepsis, are likely to depress gastrointestinal peristalsis. We queried whether propofol or dexmedetomidine, at sedative doses, aggravated sepsis-induced ileus. METHODS: Sedative/Anesthetic Scores and vital signs of lipopolysaccharide (LPS)-induced endotoxemic mice were measured during sedation with propofol or dexmedetomidine. Endotoxemic mice were divided into 10% fat emulsion, propofol, saline, and dexmedetomidine group. The gastric emptying, small intestinal transit, tests of colonic motility, gastrointestinal transit and whole gut transit were evaluated at 15 mins and 24 h after intraperitoneal injection of sedatives/vehicles respectively. RESULTS: 40 mg·kg- 1propofol and 80 µg·kg- 1 dexmedetomidine induced a similar depth of sedation with comparable vital signs except that dexmedetomidine strikingly decreased heart rate in endotoxemic mice. Dexmedetomidine markedly inhibited gastric emptying (P = 0.006), small intestinal transit (P = 0.006), colonic transit (P = 0.0006), gastrointestinal transit (P = 0.0001) and the whole gut transit (P = 0.034) compared with the vehicle, whereas propofol showed no depression on all parts of gastrointestinal motility 15 mins after administration. The inhibitive effects of dexmedetomidine in these tests vanished 24 h after the administration. CONCLUSIONS: Deep sedation with dexmedetomidine, but not propofol, significantly inhibited gastrointestinal peristalsis in endotoxemic mice while the inhibitory effect disappeared 24 h after sedation. These data suggested that both propofol and dexmedetomidine could be applied in septic patients while dexmedetomidine should be used cautiously in patients with cardiac disease or ileus.


Assuntos
Dexmedetomidina/administração & dosagem , Endotoxemia/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Hipnóticos e Sedativos/administração & dosagem , Lipopolissacarídeos/toxicidade , Propofol/administração & dosagem , Animais , Dexmedetomidina/efeitos adversos , Relação Dose-Resposta a Droga , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/fisiologia , Motilidade Gastrointestinal/fisiologia , Hipnóticos e Sedativos/efeitos adversos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Propofol/efeitos adversos
13.
Water Sci Technol ; 76(3-4): 575-583, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759440

RESUMO

Shale gas has become a new sweet spot of global oil and gas exploration, and the large amount of flowback water produced during shale gas extraction is attracting increased attention. Internal recycling of flowback water for future hydraulic fracturing is currently the most effective, and it is necessary to decrease the content of divalent cations for eliminating scaling and maintaining effectiveness of friction reducer. Zeolite has been widely used as a sorbent to remove cations from wastewater. This work was carried out to investigate the effects of zeolite type, zeolite form, activation chemical, activation condition, and sorption condition on removal of Ca2+ and Mg2+ from shale gas flowback water. Results showed that low removal of Ca2+ and Mg2+ was found for raw zeolite 4A and zeolite 13X, and the efficiency of the mixture of both zeolites was slightly higher. Compared with the raw zeolites, the zeolites after activation using NaOH and NaCl greatly improved the sorption performance, and there was no significant difference between dynamic activation and static activation. Dynamic sorption outperformed static sorption, the difference exceeding 40% and 7-70% for removal of Ca2+ and Mg2+, respectively. Moreover, powdered zeolites outperformed granulated zeolites in divalent cation removal.


Assuntos
Cálcio/química , Magnésio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Zeolitas/química , Indústrias Extrativas e de Processamento , Resíduos Industriais/análise , Campos de Petróleo e Gás , Reciclagem , Águas Residuárias/química , Água
14.
J Environ Sci (China) ; 43: 177-186, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27155423

RESUMO

As a routine measurement to alleviate membrane fouling, hydraulic cleaning is of great significance for the steady operation of ultrafiltration (UF) systems in water treatment processes. In this work, a comparative study was performed to investigate the effects of the composition of backwash water on the hydraulic cleaning performance of UF membranes fouled by humic acid (HA). Various types of backwash water, including UF permeate, Milli-Q water, NaCl solution, CaCl2 solution and HA solution, were compared in terms of hydraulically irreversible fouling index, total surface tension and residual HA. The results indicated that Milli-Q water backwash was superior to UF permeate backwash in cleaning HA-fouled membranes, and the backwash water containing Na(+) or HA outperformed Milli-Q water in alleviating HA fouling. On the contrary, the presence of Ca(2+) in backwash water significantly decreased the backwash efficiency. Moreover, Ca(2+) played an important role in foulant removal, and the residual HA content closely related to the residual Ca(2+) content. Mechanism analysis suggested that the backwash process may involve fouling layer swelling, ion exchange, electric double layer release and competitive complexation. Ion exchange and competitive complexation played significant roles in the efficient hydraulic cleaning associated with Na(+) and HA, respectively.


Assuntos
Membranas Artificiais , Ultrafiltração/métodos , Substâncias Húmicas , Purificação da Água/métodos
16.
J Alzheimers Dis ; 97(4): 1545-1570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38277294

RESUMO

Coronary artery disease is a prevalent ischemic disease that results in insufficient blood supply to the heart muscle due to narrowing or occlusion of the coronary arteries. Various reperfusion strategies, including pharmacological thrombolysis and percutaneous coronary intervention, have been developed to enhance blood flow restoration. However, these interventions can lead to myocardial ischemia/reperfusion injury (MI/RI), which can cause unpredictable complications. Recent research has highlighted a compelling association between MI/RI and cognitive function, revealing pathophysiological mechanisms that may explain altered brain cognition. Manifestations in the brain following MI/RI exhibit pathological features resembling those observed in Alzheimer's disease (AD), implying a potential link between MI/RI and the development of AD. The pro-inflammatory state following MI/RI may induce neuroinflammation via systemic inflammation, while impaired cardiac function can result in cerebral under-perfusion. This review delves into the role of extracellular vesicles in transporting deleterious substances from the heart to the brain during conditions of MI/RI, potentially contributing to impaired cognition. Addressing the cognitive consequence of MI/RI, the review also emphasizes potential neuroprotective interventions and pharmacological treatments within the MI/RI model. In conclusion, the review underscores the significant impact of MI/RI on cognitive function, summarizes potential mechanisms of cardio-cerebral communication in the context of MI/RI, and offers ideas and insights for the prevention and treatment of cognitive dysfunction following MI/RI.


Assuntos
Disfunção Cognitiva , Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Reperfusão , Comunicação , Disfunção Cognitiva/etiologia
17.
Water Res ; 254: 121340, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428235

RESUMO

Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (∼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.


Assuntos
Prótons , Purificação da Água , Salinidade , Estudos de Viabilidade , Osmose
18.
Water Res ; 257: 121674, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678835

RESUMO

The occurrence of seasonal algae blooms represents a huge dilemma for water resource management and has garnered widespread attention. Therefore, finding methods to control algae pollution and improve water quality is urgently needed. Moderate oxidation has emerged as a feasible way of algae-laden water treatment and is an economical and prospective strategy for controlling algae and endogenous and exogenous pollutants. Despite this, a comprehensive understanding of algae-laden water treatment by moderate oxidation, particularly principles and summary of advanced strategies, as well as challenges in moderate oxidation application, is still lacking. This review outlines the properties and characterization of algae-laden water, which serve as a prerequisite for assessing the treatment efficiency of moderate oxidation. Biomass, cell viability, and organic matter are key components to assessing moderate oxidation performance. More importantly, the recent advancements in employing moderate oxidation as a treatment or pretreatment procedure were examined, and the suitability of different techniques was evaluated. Generally, moderate oxidation is more promising for improving the solid-liquid separation process by the reduction of cell surface charge (stability) and removal/degradation of the soluble algae secretions. Furthermore, this review presents an outlook on future research directions aimed at overcoming the challenges encountered by existing moderate oxidation technologies. This comprehensive examination aims to provide new and valuable insights into the moderate oxidation process.


Assuntos
Oxirredução , Purificação da Água , Purificação da Água/métodos , Biomassa , Eutrofização , Água/química
19.
Water Res ; 266: 122332, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39216126

RESUMO

Substantial volumes of hazardous shale gas produced water (SGPW) generated in unconventional natural gas exploration. Membrane distillation (MD) is a promising approach for SGPW desalination, while membrane fouling, wetting, and permeate deterioration restrict MD application. The integration of gravity-driven membrane (GDM) with MD process was proposed to improve MD performance, and different pretreatment methods (i.e., oxidation, coagulation, and granular filtration) were systematically investigated. Results showed that pretreatment released GDM fouling and improved permeate quality by enrich certain microbes' community (e.g., Proteobacteria and Nitrosomonadaceae), greatly ensured the efficient desalination of MD. Pretreatment greatly influences GDM fouling layer morphology, leading to different flux performance. Thick/rough/hydrophilic fouling layer formed after coagulation, and thin/loose fouling layer formed after silica sand filtration improved GDM flux by 2.92 and 1.9 times, respectively. Moreover, the beneficial utilization of adsorption-biodegradation effects significantly enhanced GDM permeate quality. 100 % of ammonia and 53.99 % of UV254 were efficiently removed after zeolite filtration-GDM and granular activated carbon filtration-GDM, respectively. Compared to the surged conductivity (41.29 µS/cm) and severe flux decline (>82 %) under water recovery rate of 75 % observed in single MD for SGPW treatment, GDM economically controlled permeate conductivity (1.39-19.9 µS/cm) and MD fouling (flux decline=8.3 %-27.5 %). Exploring the mechanisms, the GDM-MD process has similarity with Janus MD membrane in SGPW treatment, significantly reduced MD fouling and wetting.

20.
Water Res ; 262: 122139, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39068730

RESUMO

Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.


Assuntos
Carbonatos , Destilação , Membranas Artificiais , Oxirredução , Destilação/métodos , Carbonatos/química , Purificação da Água/métodos , Ferro/química , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA