Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(12): e1009178, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33351848

RESUMO

[This corrects the article DOI: 10.1371/journal.ppat.1007288.].

2.
PLoS Pathog ; 14(9): e1007288, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212572

RESUMO

Salicylic acid (SA) is a key phytohormone that mediates a broad spectrum of resistance against a diverse range of viruses; however, the downstream pathway of SA governed antiviral immune response remains largely to be explored. Here, we identified an orchid protein containing A20 and AN1 zinc finger domains, designated Pha13. Pha13 is up-regulated upon virus infection, and the transgenic monocot orchid and dicot Arabidopsis overexpressing orchid Pha13 conferred greater resistance to different viruses. In addition, our data showed that Arabidopsis homolog of Pha13, AtSAP5, is also involved in virus resistance. Pha13 and AtSAP5 are early induced by exogenous SA treatment, and participate in the expression of SA-mediated immune responsive genes, including the master regulator gene of plant immunity, NPR1, as well as NPR1-independent virus defense genes. SA also induced the proteasome degradation of Pha13. Functional domain analysis revealed that AN1 domain of Pha13 is involved in expression of orchid NPR1 through its AN1 domain, whereas dual A20/AN1 domains orchestrated the overall virus resistance. Subcellular localization analysis suggested that Pha13 can be found localized in the nucleus. Self-ubiquitination assay revealed that Pha13 confer E3 ligase activity, and the main E3 ligase activity was mapped to the A20 domain. Identification of Pha13 interacting proteins and substrate by yeast two-hybrid screening revealed mainly ubiquitin proteins. Further detailed biochemical analysis revealed that A20 domain of Pha13 binds to various polyubiquitin chains, suggesting that Pha13 may interact with multiple ubiquitinated proteins. Our findings revealed that Pha13 serves as an important regulatory hub in plant antiviral immunity, and uncover a delicate mode of immune regulation through the coordination of A20 and/or AN1 domains, as well as through the modulation of E3 ligase and ubiquitin chain binding activity of Pha13.


Assuntos
Imunidade Vegetal , Proteínas de Plantas/imunologia , Vírus de Plantas/imunologia , Vírus de Plantas/patogenicidade , Sequência de Aminoácidos , Antivirais/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Genes de Plantas , Interações Hospedeiro-Patógeno , Modelos Biológicos , Orchidaceae/imunologia , Orchidaceae/metabolismo , Orchidaceae/virologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Domínios Proteicos , Ácido Salicílico/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Dedos de Zinco
3.
Nanomaterials (Basel) ; 14(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38202481

RESUMO

The demand for highly sensitive and selective gas sensors has been steadily increasing, driven by applications in various fields such as environmental monitoring, healthcare, and industrial safety. In this context, ternary alloy indium aluminum nitride (InAlN) semiconductors have emerged as a promising material for gas sensing due to their unique properties and tunable material characteristics. This work focuses on the fabrication and characterization of InAlN nanorods grown on sapphire substrates using an ultra-high vacuum magnetron sputter epitaxy with precise control over indium composition and explores their potential for acetone-gas-sensing applications. Various characterization techniques, including XRD, SEM, and TEM, demonstrate the structural and morphological insights of InAlN nanorods, making them suitable for gas-sensing applications. To evaluate the gas-sensing performance of the InAlN nanorods, acetone was chosen as a target analyte due to its relevance in medical diagnostics and industrial processes. The results reveal that the InAlN nanorods exhibit a remarkable sensor response of 2.33% at 600 ppm acetone gas concentration at an operating temperature of 350 °C, with a rapid response time of 18 s. Their high sensor response and rapid response make InAlN a viable candidate for use in medical diagnostics, industrial safety, and environmental monitoring.

4.
Physiol Plant ; 143(3): 219-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21834856

RESUMO

The rice sucrose synthase 1 (RSus1) gene is transcriptionally induced by sucrose, and a region within its promoter, at -1117 to -958 upstream of the transcription initiation site, was found to be essential for enhancing the sucrose-induced expression. Further dissection of this region revealed that a group of nuclear proteins interact with a 39-bp fragment named A-3-2 (-1045 to -1007). A protein that specifically and directly interacted with A-3-2 was isolated from the suspension-cultured cells of rice and was subsequently identified as a purine-rich DNA-binding protein. The amino acid sequence of this protein, OsPurα, exhibited 73% identity with the Arabidopsis Purα-1 protein, and its modeled structure resembled the structure of Pur-α in Drosophila. Recombinant OsPurα expressed and purified from Escherichia coli was demonstrated to have DNA-binding activity and to interact with A-3-2 specifically. Moreover, OsPurα was able to enhance sucrose-induced expression of the ß-glucuronidase (GUS) reporter gene, which was transcriptionally fused to two copies of a DNA fragment containing A-3-2 and the cauliflower mosaic virus 35S minimal promoter, in vivo. The level of OsPurα bound to A-3-2 was higher in cells cultured in the presence of sucrose; however, the level of OsPurα mRNA in cells was not affected by sucrose. The results of this study demonstrate that OsPurα participates in the regulation of RSus1 expression in response to sucrose; nevertheless, it may require other partner proteins for full function.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Glucosiltransferases/biossíntese , Glucuronidase/biossíntese , Glucuronidase/genética , Dados de Sequência Molecular , Estrutura Molecular , Oryza/enzimologia , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de Proteína , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA