Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770735

RESUMO

Layered metallic transition-metal dichalcogenides (TMDCs) are ideal platforms for exploring their fascinating electronic properties at two-dimensional limits, such as their charge density wave (CDW) and superconductivity. Therefore, developing ways to improve the crystallization quality of TMDCs is urgently needed. Here we report superconductively tunable NbSe2 grown by a two-step vapor deposition method. By optimizing the sputtering conditions, superconducting NbSe2 films were prepared from highly crystalline Nb films. The bilayer NbSe2 films showed a superconducting transition temperature that was up to 3.1 K. Similar to the salt-assisted chemical vapor deposition (CVD) method, superconducting monolayer NbSe2 crystals were also grown from a selenide precursor, and the growth strategy is suitable for many other TMDCs. Our growth method not only provides a way to improve the crystalline quality of TMDC films, but also gives new insight into the growth of monolayer TMDCs. It holds promise for exploring two-dimensional TMDCs in fundamental research and device applications.

2.
ACS Appl Mater Interfaces ; 14(13): 15448-15460, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35324166

RESUMO

Ammonium cations and sulfonate anions have been introduced as end-caps for alkyl viologens with thiophene-derived bridges. When the as-prepared thienoviologen derivatives are dispersed in polyacrylamide (PAAm) hydrogels, photochromic (PC) and electrochromic (EC) bifunctional hydrogels can be simply realized. The incorporated thiophene or ethylenedioxylthiophene bridge not only expands the photoresponse range but also stabilizes the photoinduced radical intermediate. Therefore, reversible PC and EC behaviors can be achieved for hydrogels containing thienoviologens N,N'-di(3-(trimethylammonio)propyl)-4,4'-(thien-2,5-diyl)bispyridinium tetrabromide (ATV), N,N'-bis(3-sulfonatopropyl)-4,4'-(thien-2,5-diyl)bispyridinium (STV), N,N'-di(3-(trimethylammonio)propyl)-4,4'-(3,4-ethylenedioxylthien-2,5-diyl)bispyridinium tetrabromide (AETV), and N,N'-bis(3-sulfonatopropyl)-4,4'-(3,4-ethylenedioxylthien-2,5-diyl)bispyridinium (SETV). On the contrary, no photochromism can be observed for PAAm hydrogels based on N,N'-di(3-(trimethylammonio)propyl)-4,4'-bipyridinium tetrabromide (AV) and N,N'-bis(3-sulfonatopropyl)-4,4'-bipyridinium (SV) without thiophene bridges. Furthermore, no significant coloration difference can be observed between the hydrogels containing ammonium- and sulfonate-functionalized viologens. However, during repetitive cycles, the transmittance contrast losses of electrochromic devices (ECDs) based on the hydrogels containing ammonium-modified viologens are lower than those for sulfonate-substituted viologens probably due to their larger number of cation-anion pairs and thus higher solubility in aqueous media. Typically, no observable difference can be found for unsealed ECDs after 15 days in ambient conditions. Additionally, a large-area ECD with a diameter of 10 cm has been facilely fabricated by simply sandwiching the EC hydrogels, and the transparency can be finely tuned upon applying different potentials. Overall, our findings may provide a new path to design multifunctional hydrogels with PC and EC responses.

3.
ACS Appl Mater Interfaces ; 12(35): 39505-39514, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805883

RESUMO

Cyclohexane-1,2,4,5-tetracarboxylic diimide with a nonconjugated core has been incorporated to bridge two conventional triphenylamine units. The obtained monomer has successfully hypsochromically shifted the maximum absorption wavelength by 10 nm in comparison to the one with a pyromellitic diimide bridge. Consequently, a colorless electrochromic (EC) polymer poly(bis(N,N-diphenyl-4-aminophenyl)cyclohexane-1,2,4,5-tetracarboxylic diimide) (PTPA-HDI) was electropolymerized on indium tin oxide (ITO)-coated glass. The morphology, absorption, and spectroelectrochemistry properties of polymer PTPA-HDI films electropolymerized by different scan cycles have been systematically investigated. It is found that comprehensive properties, such as color contrast and initial transparence, can be achieved for the polymer film electropolymerized by 15 scan cycles. Moreover, to realize colorless-to-black electrochromism, an asymmetric viologen derivative 1-(4-cyanophenyl)-1'-hexyl-4,4'-bipyridinium dihexafluorophosphate (HVCN) has been designed and straightforward synthesized. With the introduction of a cyanophenyl group and a hexyl chain on the two pyridinium units, colorless-to-green electrochromism can be realized for this processible viologen derivative. The absorption band at 495 nm of colorated PTPA-HDI compensates well for the valley in the absorption spectrum of colorated HVCN. Therefore, different types of colorless-to-black electrochromic devices (ECDs) are fabricated using polymer PTPA-HDI-deposited ITO electrode and HVCN-based gel electrolyte. Such a supporting electrolyte-free ECD with binary electrochromes exhibits fast coloration, high color contrast, and excellent reversibility. Furthermore, an encryption ECD is demonstrated by switching a black two-dimensional code. In addition, an autodigital display is integrated on a smart window and hence different functions can be realized in a single ECD. Overall, this study may facilitate the understanding of the EC behaviors of binary electrochromes and present a new path to design multifunctional displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA